
Astrolab Security Review
Pashov Audit Group

Conducted by: unforgiven, __141345__, ast3ros
January 25th 2024 - January 31st 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Astrolab
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Inflating redemption request and DoS in the vault
[C-02] Wrong usage of mapping target in
cancelRedeemRequest

8.2. High Findings
[H-01] Accounts not properly removed from roles upon
revoking
[H-02] Flash loan wrong balance check
[H-03] Flash loan not working due to transferFrom Issue
[H-04] withdraw() worst price will distort sharePrice()
[H-05] Fee calculation mismatch in mint, deposit, redeem
and withdraw
[H-06] Fee target mismatch in deposit, mint, withdraw,
redeem and preview*** methods
[H-07] Accounting issues after underlying asset change

8.3. Medium Findings
[M-01] Redeem function active when vault is paused
[M-02] Wrong rounding direction in previewWithdraw()
[M-03] Wrong rounding direction in previewMint()
[M-04] Wrong usage of revBp() in deposit() in fee
calculation

1

3

3

3

3

4

4
4
5

5

6

9

9

9

10

13

13

15

16

19

21

23

25

26

26

27

28

30

[M-05] Using deprecated function in Chainlink
[M-06] Fee on Transfer Token Will Break accounting
[M-07] Using stale price in Pyth Network
[M-08] ERC20::approve will revert for some non-
standard tokens like USDT

8.4. Low Findings
[L-01] Inconsistency in access control for setInputs
[L-02] Storage slot collision due to adding
rescueRequests in StrategyV5Agent

2

30

32

33

34

36

36

36

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the strats repository was done by Pashov Audit
Group, with a focus on the security aspects of the application's smart contracts
implementation.

4. About Astrolab
Astrolab DAO aims to redefine yield aggregation by providing superior yields at
scale. The way to do so is through cross-chain diversification and maximized capital
efficiency, leveraging top-tier liquidity aggregators on-chain and algorithmic
execution.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

4

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - afe24b344f9e25104cbdd240d5d4448f01b06e07

fixes review commit hash - f34c311f3c5fe6adac4522a9f2a9ead75b8d639a

Scope

The following smart contracts were in scope of the audit:

abstract/AsAccessControl

abstract/AsRescuable

abstract/StrategyV5Abstract

abstract/As4626

abstract/StrategyV5

abstract/StrategyV5Chainlink

abstract/AsManageable

abstract/StrategyV5Agent

abstract/StrategyV5Pyth

abstract/As4626Abstract

libs/AsAccounting

5

https://github.com/AstrolabDAO/strats/tree/afe24b344f9e25104cbdd240d5d4448f01b06e07
https://github.com/AstrolabDAO/strats/tree/f34c311f3c5fe6adac4522a9f2a9ead75b8d639a

7. Executive Summary
Over the course of the security review, unforgiven, __141345__, ast3ros engaged
with AstrolabDAO to review Astrolab. In this period of time a total of 19 issues
were uncovered.

Protocol Summary
Protocol Name Astrolab

Repository https://github.com/AstrolabDAO/strats

Date January 25th 2024 - January 31st 2024

Protocol Type Yield aggregator

Findings Count
Severity Amount

Critical 2

High 7

Medium 8

Low 2

Total Findings 19

6

Summary of Findings
ID Title Severity Status

[C-01] Inflating redemption request and DoS in the
vault Critical Resolved

[C-02] Wrong usage of mapping target in
cancelRedeemRequest Critical Resolved

[H-01] Accounts not properly removed from roles
upon revoking High Resolved

[H-02] Flash loan wrong balance check High Resolved

[H-03] Flash loan not working due to transferFrom
Issue High Resolved

[H-04] withdraw() worst price will distort
sharePrice() High Resolved

[H-05] Fee calculation mismatch in mint, deposit,
redeem and withdraw High Resolved

[H-06] Fee target mismatch in deposit, mint,
withdraw, redeem and preview*** methods High Resolved

[H-07] Accounting issues after underlying asset
change High Resolved

[M-01] Redeem function active when vault is
paused Medium Resolved

[M-02] Wrong rounding direction in
previewWithdraw() Medium Resolved

[M-03] Wrong rounding direction in previewMint() Medium Resolved

[M-04] Wrong usage of revBp() in deposit() in fee
calculation Medium Resolved

[M-05] Using deprecated function in Chainlink Medium Resolved

7

[M-06] Fee on Transfer Token Will Break
accounting Medium Resolved

[M-07] Using stale price in Pyth Network Medium Resolved

[M-08] ERC20::approve will revert for some non-
standard tokens like USDT Medium Resolved

[L-01] Inconsistency in access control for
setInputs Low Resolved

[L-02] Storage slot collision due to adding
rescueRequests in StrategyV5Agent Low Resolved

8

8. Findings

8.1. Critical Findings

[C-01] Inflating redemption request and
DoS in the vault

Severity
Impact: High, because this can disrupt all primary functionalities of the vaults,
leading to a denial of service

Likelihood: High, because any vault share owner can exploit this easily

Description
In requestRedeem , the function ensures that the shares requested for
redemption are not greater than the owner's share balance. However, the
operator parameter is not validated. This allows users to inflate the
req.totalRedemption value by repeatedly submitting redemption requests
with different operator addresses. The req.totalRedemption can be inflated to
be larger than totalAssets .

function requestRedeem(
 uint256 shares,
 address operator,
 address owner
) public nonReentrant {
 if (owner != msg.sender || shares == 0 || balanceOf(owner) < shares)
 revert Unauthorized();

This inflation of totalRedemption subsequently leads to an increase in
pendingRedemption during the liquidate function call by the keeper, which in
turn inflates req.totalClaimableRedemption

uint256 pendingRedemption = totalPendingRedemptionRequest();

 req.totalClaimableRedemption += pendingRedemption;

9

The inflated req.totalClaimableRedemption disrupts the sharePrice()
function, causing it to consistently revert. This is problematic as critical
operations like deposit, mint, withdraw, and redeem rely on the sharePrice
function.

function sharePrice() public view virtual returns (uint256) {
 uint256 supply = totalAccountedSupply();
 return
 supply == 0
 ? weiPerShare
 : totalAccountedAssets().mulDiv(// eg. e6
 weiPerShare ** 2, // 1e8*2
 supply * weiPerAsset
); // eg. (1e6+1e8+1e8)-(1e8+1e6)
 }

The sharePrice function reverts because the totalAccountedAssets calculation
returns a negative value due to totalAssets being smaller than the inflated
req. totalClaimableRedemption . This calculation error results in a DoS for the
entire protocol.

function totalAccountedAssets() public view returns (uint256) {
 return
 totalAssets() -
 req.totalClaimableRedemption.mulDiv(
 last.sharePrice * weiPerAsset,
 weiPerShare ** 2
); // eg. (1e8+1e8+1e6)-(1e8+1e8) = 1e6
 }

Recommendations
To validate the operator in the requestRedeem function and ensure that an
owner can only request redemption once, using their own shares.

[C-02] Wrong usage of mapping target in
`cancelRedeemRequest``

Severity
Impact: High, one can burn others' tokens

Likelihood: High, it can be done permissionless

Description
10

Users can call cancelRedeemRequest() can cancel their redeem requests and
code would burn the excess shares from the loss incurred while not farming
with the idle funds (opportunity cost). The issue is that code doesn't check that
operator have allowance over owner's funds and one can call this function and
burn others tokens.

also the second mistake is that code uses req.byOperator[operator] instead
of the req.byOperator[owner] .

This is the POC:

1. attacker will create a redeem request when the price in the contract is 1.5 for
hist ADD1 address and AMOUNT1.

2. after some time attacker that price() in the contract is 2 attacker can call
cancelRedeemRequest(owner=target_user, operator=ADD1) with his ADD1
address.

3. now because msg.sender == operator code would allow the call and also
there is no allowance check for owner and operator.

4. in the end because price has increased from 1.5 to 2 code would burn some
of owner's shares.

function cancelRedeemRequest(
 address operator,
 address owner
) external nonReentrant {

 if (owner != msg.sender && operator != msg.sender)
 revert Unauthorized();

 Erc7540Request storage request = req.byOperator[operator];
 uint256 shares = request.shares;

 if (shares == 0) revert AmountTooLow(0);

 last.sharePrice = sharePrice();

 if (last.sharePrice > request.sharePrice) {
 // burn the excess shares from the loss incurred while not farming
 // with the idle funds (opportunity cost)
 uint256 opportunityCost = shares.mulDiv(
 last.sharePrice - request.sharePrice,
 weiPerShare
); // eg. 1e8+1e8-1e8 = 1e8
 _burn(owner, opportunityCost);
 }

There is similar bug in the requestRedeem() and _withdraw() that require
attention too.

Recommendations
11

In cancelRedeemRequest() use req.byOperator[owner] and also make sure
operator have allowance over owner tokens. In requestRedeem() code should
save information in req.byOperator[owner] and also confirms that operator
have allowance over owner funds. Use req.byOperator[_owner] in
_withdraw().

12

8.2. High Findings

[H-01] Accounts not properly removed from
roles upon revoking

Severity
Impact: High - Accounts that are removed from a role, particularly critical
roles like the default admin, retain access to the role's privileges. This poses
significant security risks.

Likelihood: Medium - The issue occurs consistently every time the
revokeRole function is called.

Description
When an account is revoked from a role, _revokeRole function removes
account from the members set.

function _revokeRole(bytes32 role, address account) internal virtual {
 if (hasRole(role, account)) {
 _roles[role].members.remove(account.toBytes32());
 emit RoleRevoked(role, account, msg.sender);
 }
 }

In the AsSequentialSet.sol library, roles are stored in the Set struct, which
contains an array data and a mapping index from bytes32 to uint32.

struct Set {
 bytes32[] data;
 mapping(bytes32 => uint32) index;
 }

The remove function in the library is supposed to handle the removal of
elements but calls removeAt which only removes the account from the
Set.data array and does not reset the Set.index .

13

function remove(Set storage q, bytes32 o) internal {
 uint32 i = q.index[o];
 require(i > 0, "Element not found");
 removeAt(q, i - 1);
 }

 function removeAt(Set storage q, uint256 i) internal {
 require(i < q.data.length, "Index out of bounds");
 if (i < q.data.length - 1) {
 delete q.data[i];
 q.data[i] = q.data[q.data.length - 1];
 }
 q.data.pop();
 }

Therefore, when the hasRole function checks if a user has a role by using the
has function.

function hasRole
 (bytes32 role, address account) public view virtual returns (bool) {
 return _roles[role].members.has(account.toBytes32());
 }

And the has function only checks the index of that account, and the index still
exists. It means after the user is removed from the role, it still has the role.

function has(Set storage q, bytes32 o) internal view returns (bool) {
 return q.index[o] > 0 && q.index[o] <= q.data.length;
 }

POC
Put the file in test/POC.t.sol

https://gist.github.com/thangtranth/685dd8fa7faae141cdd2b1d0061b16f5

Recommendations
The remove function in AsSequentialSet.sol should be modified to reset the
index of the removed account

function remove(Set storage q, bytes32 o) internal {
 uint32 i = q.index[o];
+ q.index[o] = 0;
 require(i > 0, "Element not found");
 removeAt(q, i - 1);
 }

14

[H-02] Flash loan wrong balance check

Severity
Impact: Medium, because the flash loan functionality is affected

Likelihood: High, because it will revert every time а flash loan is used

Description
balanceBefore is recorded before the flash loan amount being transferred. As
a result, in line 714, balanceAfter need to be more than needed. Users have to
pay extra with the same amount to use a flash loan.

File: src\abstract\As4626.sol
696: function flashLoanSimple() external nonReentrant {

705: uint256 fee = exemptionList[msg.sender] ? 0 : amount.bp
 (fees.flash);
706: uint256 toRepay = amount + fee;
707:
708: uint256 balanceBefore = asset.balanceOf(address(this));
709: totalLent += amount;
710:
711: asset.safeTransferFrom(address(this), address(receiver), amount);
712: receiver.executeOperation(address
 (asset), amount, fee, msg.sender, params);
713:
714: if ((asset.balanceOf(address(this)) - balanceBefore) < toRepay)
715: revert FlashLoanDefault(msg.sender, amount);

718: }

Recommendations
The toRepay variable could be dropped, or record the balanceBefore after
safeTransferFrom :

15

File: src\abstract\As4626.sol
696: function flashLoanSimple() external nonReentrant {

705: uint256 fee = exemptionList[msg.sender] ? 0 : amount.bp
 (fees.flash);
- 706: uint256 toRepay = amount + fee;
707:
708: uint256 balanceBefore = asset.balanceOf(address(this));
709: totalLent += amount;
710:
711: asset.safeTransferFrom(address(this), address(receiver), amount);
712: receiver.executeOperation(address
 (asset), amount, fee, msg.sender, params);
713:
- 714: if ((asset.balanceOf(address(this)) - balanceBefore) < toRepay)
+ 714: if ((asset.balanceOf(address(this)) - balanceBefore) < fee)
715: revert FlashLoanDefault(msg.sender, amount);

718: }

[H-03] Flash loan not working due to
transferFrom Issue

Severity
Impact: Medium - The flash loan functionality is non-operational, but there's
no risk of fund loss.

Likelihood: High - The flash loan function consistently fails to execute as
intended.

Description
The issue arises when users attempt to use the flashLoanSimple function:

16

function flashLoanSimple(
 IFlashLoanReceiver receiver,
 uint256 amount,
 bytes calldata params
) external nonReentrant {

 uint256 available = availableBorrowable();
 if (amount > available || amount > maxLoan) revert AmountTooHigh
 (amount);

 uint256 fee = exemptionList[msg.sender] ? 0 : amount.bp(fees.flash);
 uint256 toRepay = amount + fee;

 uint256 balanceBefore = asset.balanceOf(address(this));
 totalLent += amount;

@> asset.safeTransferFrom(address(this), address(receiver), amount);
 receiver.executeOperation(address
 (asset), amount, fee, msg.sender, params);

 if ((asset.balanceOf(address(this)) - balanceBefore) < toRepay)
 revert FlashLoanDefault(msg.sender, amount);

 emit FlashLoan(msg.sender, amount, fee);
 }

To transfer the fund to users, it uses asset.safeTransferFrom(address(this),
address(receiver), amount);

This line intends to transfer funds to the user. However, it fails because
safeTransferFrom requires the contract to have a sufficient allowance to
"spend" on behalf of itself. In the context of ERC20 tokens like USDC, the
transferFrom function includes a crucial check: value <= allowed[from]
[msg.sender]

However, because the contract has not yet approved itself, leading to a
situation where the allowance remains at zero, and hence the transferFrom
call reverts.

17

function transferFrom(
 address from,
 address to,
 uint256 value
)
 external
 override
 whenNotPaused
 notBlacklisted(msg.sender)
 notBlacklisted(from)
 notBlacklisted(to)
 returns (bool)
 {
 require(
 value <= allowed[from][msg.sender],
 "ERC20: transfer amount exceeds allowance"
);
 _transfer(from, to, value);
 allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
 return true;
 }

USDC - FiatTokenV1.sol:
https://arbiscan.io/address/0xaf88d065e77c8cc2239327c5edb3a432268e5831

Using transfer does not require additional approval.

Recommendations
Replacing the safeTransferFrom function with safeTransfer :

function flashLoanSimple(
 IFlashLoanReceiver receiver,
 uint256 amount,
 bytes calldata params
) external nonReentrant {

 uint256 available = availableBorrowable();
 if (amount > available || amount > maxLoan) revert AmountTooHigh
 (amount);

 uint256 fee = exemptionList[msg.sender] ? 0 : amount.bp(fees.flash);
 uint256 toRepay = amount + fee;

 uint256 balanceBefore = asset.balanceOf(address(this));
 totalLent += amount;

- asset.safeTransferFrom(address(this), address(receiver), amount);
+ asset.safeTransfer(address(receiver), amount);
 receiver.executeOperation(address
 (asset), amount, fee, msg.sender, params);

 if ((asset.balanceOf(address(this)) - balanceBefore) < toRepay)
 revert FlashLoanDefault(msg.sender, amount);

 emit FlashLoan(msg.sender, amount, fee);
 }

18

[H-04] withdraw() worst price will distort
sharePrice()

Severity
Impact: High, because inaccurate price will cause long term value leaking,
and can not be fixed

Likelihood: Medium, because every time withdraw() with existing request
will bring in error into the system

Description
The worst price is used in _withdraw() , which means the actual withdraw
price is different from last.sharePrice .

File: src\abstract\As4626.sol
149: function _withdraw() internal nonReentrant returns (uint256) {
159: last.sharePrice = sharePrice();

161: uint256 price = (claimable >= _shares)
162: ? AsMaths.min
//(last.sharePrice, request.sharePrice) // worst of if pre-existing request
163: : last.sharePrice; // current price

last.sharePrice is only updated in the following cases, none of them take the
real withdraw price into consideration.``

File: src\abstract\As4626.sol
84: function _deposit() internal nonReentrant returns (uint256) {
93: last.sharePrice = sharePrice();

149: function _withdraw() internal nonReentrant returns (uint256) {
159: last.sharePrice = sharePrice();

512: function requestRedeem() public nonReentrant {
523: last.sharePrice = sharePrice();

577: function cancelRedeemRequest() external nonReentrant {
590: last.sharePrice = sharePrice();

Let's look at how sharePrice() is calculated: First it calls
totalAccountedAssets() , and in totalAccountedAssets() the
last.sharePrice is directly used, seems the assumption is: last.sharePrice
remain constant with each deposit()/withdraw() . However it does not hold
since the worst price usage.

19

File: src\abstract\As4626Abstract.sol
175: function sharePrice() public view virtual returns (uint256) {
176: uint256 supply = totalAccountedSupply();
177: return
178: supply == 0
179: ? weiPerShare
180: @>>>> : totalAccountedAssets().mulDiv(// eg. e6
181: weiPerShare ** 2, // 1e8*2
182: supply * weiPerAsset
183:); // eg. (1e6+1e8+1e8)-(1e8+1e6)
184: }

154: function totalAccountedAssets() public view returns (uint256) {
155: return
156: totalAssets() -
157: req.totalClaimableRedemption.mulDiv(
158: @>>>> last.sharePrice * weiPerAsset,
159: weiPerShare ** 2
160:); // eg. (1e8+1e8+1e6)-(1e8+1e8) = 1e6
161: }

To summarize, when request.sharePrice < sharePrice() , the withdrawal
will processed at a lower price than current, in which case the discrepancy
would incur an effective sharePrice increase that would not be factored-in
last.sharePrice .

Let's see some number example:

at first, total share is 100, total asset 500, sharePrice is 5.
some user with 20 shares request withdraw at price 5.
totalClaimableRedemption is 40 (total 20% on hold).
after a long time, total asset becomes 1000, sharePrice is 10, and liquidity is
enough.
Alice calls withdraw() at price 5 (due to worst price in _withdraw()), total
asset becomes 80 (60 + 20 in totalClaimableRedemption).

Now total asset is 1000 - 20 * 5 = 900. But last.sharePrice remains 10, due to
As4626.sol#159 (last.sharePrice = sharePrice()). The actual price should be
900 / 80 = 11.25.

The next time totalAccountedAssets() will return 900 - 20 * 10 = 700,
sharePrice() will return 700 / 60 = 11.67, around 3.7% difference
(11.67~11.25).

So if some user tries to deposit a bit amount, 3.7% slippage will be the loss.

20

File: src\abstract\As4626Abstract.sol
154: function totalAccountedAssets() public view returns (uint256) {
155: return
156: totalAssets() -
157: req.totalClaimableRedemption.mulDiv(
158: last.sharePrice * weiPerAsset,
159: weiPerShare ** 2
160:); // eg. (1e8+1e8+1e6)-(1e8+1e8) = 1e6
161: }

I believe in normal situations, if the last.sharePrice and request.sharePrice are
relatively close, the sharePrice will only diff slightly.

Recommendations
One possible mitigation is to update the last.sharePrice after
deposit()/withdraw() .

[H-05] Fee calculation mismatch in mint ,
deposit , redeem and withdraw

Severity
Impact: Medium, fee will be a little higher/lower

Likelihood: High, because it happens in every call to mint and deposit
functions

Description
When users calls mint(shares) code calls _deposit(previewMint(_shares),
_shares and previewMint(shares) = convertToAssets(shares).addBp() .
When users calls deposit(amount) code calls _deposit(_amount,
previewDeposit(_amount) and previewDeposit(amount) =
convertToShares(amount).subBp .

Let's assume that price is 1:1 and fee is 10% and check the both case:

1. If user wants to mint 100 share then he would call mint(100) and code
would calculate amount = previewMint(100) =
convertToAssets(100).addBp(10%) = 110 . So in the end user would pay 110
asset and receive 100 shares and 10 asset will be fee.

21

2. If users wants to deposit 110 asset then he would call deposit(110) and
code would calculate share = previewDeposit(110) =
convertToShare(110).subBp(10%) = 99 . So in the end user would pay 11
asset and receive 99 share and 11 asset will be fee.

As you can see the deposit() call overcharge the user. The reason is that code
calculates fee based on user-specified amount by using subBp() but user-
specified amount is supposed to be amount + fee so the calculation for fee
should be * base / (base +fee) .

When users call redeem(shares) code calls
_withdraw(previewRedeem(_shares), _shares) and previewRdeem(shares) =
convertToAssets(_shares).subBp() .

When users call withdraw() code calls _withdraw(_amount,
previewWithdraw(_amount)) and previewWithdraw(_amount) =
convertToShares(_assets).addBp()

Let's assume that asset to share price is 1:1 and fee is 10% and check both
case:

1. If user wants to redeem 110 shares then he would call redeem(110) and code
would calculate amount = previewRdeem(110) =
convertToAssets(110).subBp(10%) = 99 . So in the end user would burn 110
shares and receive 99 asset and 11 asset will be fee.

2. If user wants to withdraw 100 asset then he would call withdraw(100) and
code would calculates shares = previewWithdraw(100) =
convertToShares(100).addBp(10%) = 110 . So in the end userwould burn 110
shares and receive 100 asset and 10 asset will be fee.

So as you can see redeem() overcharges users. The reason is that code
calculates fee based on user provided share with subBp() but the provided
amount is total amount (burnAmount + fee) and calculation should be *
base / (base + fee)

Recommendations
Calculate the fee for deposit() with convertToShare(amount) * base /
(base +fee) . Calculate the fee for previewRedeem() with
convertToAssets(shares) * base / (base + fee)

22

[H-06] Fee target mismatch in deposit ,
mint , withdraw , redeem and preview***
methods

Severity
Impact: High, because it can cause double spending and disturb the pool
calculations

Likelihood: Medium, because exception recipients are set by admin for
common addresses

Description
When users want to deposit their tokens, code calculates fee in
previewDeposit() and previewMint() and add/subtract it from the
amount/share. As you can see code checks entry fee based on msg.sender :

function previewDeposit(
 uint256 _amount
) public view returns (uint256 shares) {
 return convertToShares(_amount).subBp
 (exemptionList[msg.sender] ? 0 : fees.entry);
 }

 function previewMint(uint256 _shares) public view returns (uint256) {
 return convertToAssets(_shares).addBp
 (exemptionList[msg.sender] ? 0 : fees.entry);
 }

In _deposit() , code wants to account the fee and keep track of it, it perform
this action:

if (!exemptionList[_receiver])
 claimableAssetFees += _amount.revBp(fees.entry);

As you can see it uses _receiver variable which is controllable by caller.

So attacker with two addresses: RECV1 address and has set as
exemptionList[] can ADDERSS1 which doesn't set as exemptionList[] can
call mint and deposit with ADDRESS1 and set recipient as RECV1 . In
preview functions code doesn't add the fee for user deposit(or subtract it from
shares) and code would assume user didn't pay any fee, but in the _deposit()

23

function code would check RECV1 address and would add calculated fee to
accumulated fee. So in the end user didn't paid the fee but code added fee and
double spending would happen.

Attacker can use another scenarios to perform this issue too. (code calculates
fee and caller pays it but code doesn't add it to claimableAssetFees)

When users want to withdraw their tokens, Code charges fee and it's done in
preview functions by adding/subtracting fee from amount/share. As you can
see code checks exit fee based on exemptionList[] and uses msg.sender as
target:

function previewWithdraw(uint256 _assets) public view returns (uint256) {
 return convertToShares(_assets).addBp
 (exemptionList[msg.sender] ? 0 : fees.exit);
 }

 function previewRedeem(uint256 _shares) public view returns (uint256) {
 return convertToAssets(_shares).subBp
 (exemptionList[msg.sender] ? 0 : fees.exit);
 }

But in _withdraw() function when code wants to calculates fee and
accumulated it, it uses _owner :

if (!exemptionList[_owner])
 claimableAssetFees += _amount.revBp(fees.exit);

owner can be different that caller(msg.sender) and code checks that caller
have approval over the owner 's funds. So attacker can exploit this with two of
his address: OWNER1 which has set as exemptionList[] and OPERATOR1
which doesn't set as exemptionList[] . If attacker give approval of OWNER1
tokens to OPERATOR1 and calls withdraw(OWNER1) with OPERATOR1
address then double spend would happen. While code returns funds fully with
no charged fee it would also add fee to claimableAssetFees .

This can be exploited in other scenarios too. In general this inconsistency
would cause accountant errors.

Recommendations
Calculate the fee based on msg.sender in the _deposit() function. In
_withdraw() function calculate fee based on msg.sender and finally fix the
preview functions.

24

[H-07] Accounting issues after underlying
asset change

Severity
Impact: High, because the accounting would go wrong for multiple scenarios

Likelihood: Medium, because it would happen when admin calls
changeAsset()

Description
In general updating underlying asset is very risky move in a pool. All the
cached prices will be wrong.

In the current code we have two cached prices(that I know of): In
requestRedeem() code caches pool prices for requests. Code use it later in the
withdraw and cancel request. (the price impact withdraw price and also
burning tokens in cancel requests)

In calculating fee, code caches pool price and use it to calculate fee later.

(there may be other places the pool price is cached)

——— Another place that is asset amount is cached is claimableAssetFees .
updateAsset() calls the _collectFees() to handle the claimableAssetFees
and set it to zero but because of this line in the _collectFees() If (profit
== 0) return; claimableAssetFees (which shows amount in old asset) could
remain non-zero after asset update.

Recommendations
Reset the cached prices after the asset change.

25

8.3. Medium Findings

[M-01] Redeem function active when vault
is paused

Severity
Impact: High - Allows unauthorized withdrawal of assets during critical
situations when the vault is paused.

Likelihood: Low - This issue occurs only when the vault is in a paused state.

Description
The vault's deposit, mint, and withdraw functionalities are halted when it is
paused. This is implemented through the whenNotPaused modifier in the
following functions:

function deposit(
 uint256 _amount,
 address _receiver
) public whenNotPaused returns (uint256 shares) {

 function safeDeposit(
 uint256 _amount,
 uint256 _minShareAmount,
 address _receiver
) public whenNotPaused returns (uint256 shares) {

 function withdraw(
 uint256 _amount,
 address _receiver,
 address _owner
) external whenNotPaused returns (uint256) {

 function safeWithdraw(
 uint256 _amount,
 uint256 _minAmount,
 address _receiver,
 address _owner
) public whenNotPaused returns (uint256 amount) {

However, the redeem function is not pausable because the whenNotPaused
modifier is not applied . This absence allows users to withdraw assets from the
vaul when they should not.

26

function redeem(
 uint256 _shares,
 address _receiver,
 address _owner
) external returns (uint256 assets) {

 function safeRedeem(
 uint256 _shares,
 uint256 _minAmountOut,
 address _receiver,
 address _owner
) external returns (uint256 assets) {

Recommendations
Adding the whenNotPaused modifier to both the redeem and safeRedeem
functions.

function redeem(
 uint256 _shares,
 address _receiver,
 address _owner
-) external returns (uint256 assets) {
+) external whenNotPaused returns (uint256 assets) {
 return _withdraw(previewRedeem(_shares), _shares, _receiver, _owner);
 }

 function safeRedeem(
 uint256 _shares,
 uint256 _minAmountOut,
 address _receiver,
 address _owner
-) external returns (uint256 assets) {
+) external whenNotPaused returns (uint256 assets) {
 assets = _withdraw(
 previewRedeem(_shares),
 _shares, // _shares
 _receiver, // _receiver
 _owner // _owner
);
 if (assets < _minAmountOut) revert AmountTooLow(assets);
 }

[M-02] Wrong rounding direction in
previewWithdraw()

Severity
Impact: Low, because revert in mint() and violates EIP4626

Likelihood: High, because division happens in each tx

27

Description
According to the EIP4626 previewWithdraw should round up when
performing division:

Finally, EIP-4626 Vault implementers should be aware of the need
for specific, opposing rounding directions across the different
mutable and view methods, as it is considered most secure to favor
the Vault itself during calculations over its users:

If (1) it’s calculating how many shares to issue to a user for a certain
amount of the underlying tokens they provide or (2) it’s determining
the amount of the underlying tokens to transfer to them for returning
a certain amount of shares, it should round down.

If (1) it’s calculating the amount of shares a user has to supply to
receive a given amount of the underlying tokens or (2) it’s
calculating the amount of underlying tokens a user has to provide to
receive a certain amount of shares, it should round up.

But in current implementation code rounds down and favors the caller instead
of the contract.

Function withdraw() uses previewWithdraw() to calculate shares and calls
_withdraw() , as there is a check for price in _withdraw() to make sure user
received price isn't better than current price, so that check will fail and cause
revert when rounding errors happens. (calculated _shares will be smaller and
the right side of the condition will be smaller)

// amount/shares cannot be higher than the share price
 //(dictated by the inline convertToAssets below)
 if (_amount >= _shares.mulDiv(price * weiPerAsset, weiPerShare ** 2))
 revert AmountTooHigh(_amount);

Recommendation
Change previewWithdraw so that it rounds up when calculating shares.

[M-03] Wrong rounding direction in
previewMint()

28

https://eips.ethereum.org/EIPS/eip-4626

Severity
Impact: Low, because it violates EIP and also cause revert in mint()

Likelihood: High, because division happens in every mint() call

Description
According to the EIP4626 function previewMint() should round up when
calculating assets:

Finally, EIP-4626 Vault implementers should be aware of the need
for specific, opposing rounding directions across the different
mutable and view methods, as it is considered most secure to favor
the Vault itself during calculations over its users:

If (1) it’s calculating how many shares to issue to a user for a certain
amount of the underlying tokens they provide or (2) it’s determining
the amount of the underlying tokens to transfer to them for returning
a certain amount of shares, it should round down.

If (1) it’s calculating the amount of shares a user has to supply to
receive a given amount of the underlying tokens or (2) it’s
calculating the amount of underlying tokens a user has to provide to
receive a certain amount of shares, it should round up.

in current implementation code rounds down. this will cause calculations to be
in favor of the caller instead of the contract.

in function mint() code uses previewMint() and calls _deposit() , as
previewMint() would calculate smaller amount for _amount so the check
inside the _deposit() that makes sure user don't receive better price than
current price would fail and call would revert: (_amount would be lower a
little and cause right side of the condition to be smaller)

if (_shares > _amount.mulDiv
 (weiPerShare ** 2, last.sharePrice * weiPerAsset))
 revert AmountTooHigh(_amount);

Recommendations
Change previewMint so that it rounds up when calculating shares.

29

[M-04] Wrong usage of revBp() in deposit()
in fee calculation

Severity
Impact: Low, because wrong accounting of fee

Likelihood: High, because it will happen in each call to deposit/mint

Description
In _deposit() function code calculates fee like this:

// slice the fee from the amount (gas optimized)
 if (!exemptionList[_receiver])
 claimableAssetFees += _amount.revBp(fees.entry);

And the revBp() logic is:

function revBp(
 uint256 amount,
 uint256 basisPoints
) internal pure returns (uint256) {
 return mulDiv(amount, basisPoints, BP_BASIS - basisPoints);
 }

As the amount in the deposit is not sliced and it is deposit + fee so the
calculation for fee is wrong.

Recommendations
Fee calculation should be:

claimableAssetFees += _amount * fees.entry /
 (BP_BASIS + fees.entry)

[M-05] Using deprecated function in
Chainlink

Severity
30

Impact: High - Using stale prices leads to inaccurate calculations of total asset
values and share prices.

Likelihood: Low - The return price can be wrong or stale without validating

Description
To convert from USD to input token amount, StrategyV5Chainlink uses
IChainlinkAggregatorV3.latestAnswer . However the function latestAnswer
is deprecated by Chainlink. This deprecated function usage is also observed in
other libraries, such as ChainlinkUtils .

function _usdToInput(uint256 _amount, uint8 _index) internal view returns
 (uint256) {
 return _amount.mulDiv(10**uint256
 (inputFeedDecimals[_index]) * inputDecimals[_index],
 uint256(inputPriceFeeds[_index].latestAnswer()) * 1e6); // eg.
 //(1e6+1e8+1e6)-(1e8+1e6) = 1e6
}

For reference: https://docs.chain.link/data-feeds/api-reference#latestanswer

IChainlinkAggregatorV3.latestRoundData should be used instead.

Recommendations
Update the function to use latestRoundData from Chainlink. This method
provides comprehensive data about the latest price round, including the
timestamp, ensuring the price's freshness and relevance.

Example implementation:

uint256 private constant GRACE_PERIOD_TIME = 3600; // how long till we consider
// the price as stale

function getChainlinkPrice (AggregatorV2V3Interface feed) internal {
 (
 uint80roundId,
 int256price,
 uintstartedAt,
 uintupdatedAt,
 uint80answeredInRound
) = feed.latestRoundData(
 require(price > 0, "invalid price");
 require(block.timestamp <= updatedAt + GRACE_PERIOD_TIME, "Stale price");
 return price;
}

31

When deploying on Arbitrum, include a check to verify the status of the
Arbitrum Sequencer, as this can impact the reliability of the price feeds.

Example: https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-code

[M-06] Fee on Transfer Token Will Break
accounting

Severity
Impact: High, because the accounting will be incorrect, and the sharePrice
will be affected

Likelihood: Low, because fee on transfer token is not commonly used

Description
mint()/deposit() is using amount for transfering and accounting. But fee on
transfer token could break the accounting, since the actual token received will
be less than amount. As a result, sharePrice will have some small error each
time.

File: src\abstract\As4626.sol
69: function mint(
70: uint256 _shares,
71: address _receiver
72:) public returns (uint256 assets) {
73: return _deposit(previewMint(_shares), _shares, _receiver);
74: }

117: function deposit(
118: uint256 _amount,
119: address _receiver
120:) public whenNotPaused returns (uint256 shares) {
121: return _deposit(_amount, previewDeposit(_amount), _receiver);
122: }

84: function _deposit(
85: uint256 _amount,
86: uint256 _shares,
87: address _receiver
88:) internal nonReentrant returns (uint256) {

98: asset.safeTransferFrom(msg.sender, address(this), _amount);

105: _mint(_receiver, _shares);

USDT potentially could turn on fee on transfer feature, but not yet.

32

Recommendations
Use before and after balance to accurately reflect the true amount received, and
update share price accordingly.

[M-07] Using stale price in Pyth Network

Severity
Impact: High - Using stale prices leads to inaccurate calculations of total asset
values and share prices.

Likelihood: Low - Price can be stale frequently if there is no update

Description
The StrategyV5Pyth uses pyth.getPriceUnsafe for obtaining Pyth oracle
price feeds to calculate the asset/input exchange rate.

function assetExchangeRate(uint8 inputId) public view returns (uint256) {
 if (inputPythIds[inputId] == assetPythId)
 return weiPerShare; // == weiPerUnit of asset == 1:1
 PythStructs.Price memory inputPrice = pyth.getPriceUnsafe
 (inputPythIds[inputId]);
 PythStructs.Price memory assetPrice = pyth.getPriceUnsafe(assetPythId);
 ...
 }

However, from the Pyth documents, using the getPriceUnsafe can return stale
price if the price is not updated.

/// @notice Returns the price of a price feed without any sanity checks.
 /// @dev This function returns the most recent price update in this contract
 // without any recency checks.
 /// This function is unsafe as the returned price update may be arbitrarily
 // far in the past.
 ///
 /// Users of this function should check the `publishTime` in the price to
 // ensure that the returned price is
 /// sufficiently recent for their application. If you are considering using
 // this function, it may be
 /// safer / easier to use either `getPrice` or `getPriceNoOlderThan`.
 /// @return price - please read the documentation of PythStructs.Price to
 // understand how to use this safely.
 function getPriceUnsafe(
 bytes32 id
) external view returns (PythStructs.Price memory price);

33

The assetExchangeRate function doesn't verify Price.publishTime ,
potentially leading to outdated exchange rates, incorrect investment
calculations, and distorted total asset values.

Recommendations
Using pyth.updatePriceFeeds for updating prices, followed by
pyth.getPrice for retrieval. Following the example in:
https://github.com/pyth-network/pyth-sdk-
solidity/blob/main/README.md#example-usage

[M-08] ERC20::approve will revert for some
non-standard tokens like USDT

Severity
Impact: Medium, because functionality won't work

Likelihood: Medium, because USDT is a common token

Description
Code uses the approve method to set allowance for ERC20 tokens in
setSwapperAllowance . This will cause revert if the target ERC20 was a non-
standard token that has different function signature for approve() function.
Tokens like USDT will cause revert for this function, so they can't be used as
reward token, input token and underlying asset.

function setSwapperAllowance(uint256 _amount) public onlyAdmin {
 address swapperAddress = address(swapper);

 for (uint256 i = 0; i < rewardLength; i++) {
 if (rewardTokens[i] == address(0)) break;
 IERC20Metadata(rewardTokens[i]).approve(swapperAddress, _amount);
 }
 for (uint256 i = 0; i < inputLength; i++) {
 if (address(inputs[i]) == address(0)) break;
 inputs[i].approve(swapperAddress, _amount);
 }
 asset.approve(swapperAddress, _amount);
 }

Recommendations

34

Use SafeERC20 's forceApprove method instead to support all the ERC20
tokens.

35

8.4. Low Findings

[L-01] Inconsistency in access control for
setInputs

In both StrategyV5Chainlink and StrategyV5Pyth , the setInputs function is
restricted to the admin role:

function setInputs(
 address[]calldata_inputs,
 uint16[]calldata_weights,
 address[]calldata_priceFeeds
) external onlyAdmin {
 ...
 }

 function setInputs(
 address[]calldata_inputs,
 uint16[]calldata_weights,
 bytes32[]calldata_pythIds
) external onlyAdmin {
 ...
 }

Contrastingly, in the StrategyV5Agent (the parent contract), setInputs is
designed to be accessible by the manager role:

function setInputs(
 address[] calldata _inputs,
 uint16[] calldata _weights
) public onlyManager {
 ...
 }

If an account holds only the admin or manager role, they cannot execute the
setInputs function in all strategies. And it may lead to confusion.

To resolve this, make sure to be consistent in the access control of the
setInputs method.

[L-02] Storage slot collision due to adding
rescueRequests in StrategyV5Agent

36

The storage layout of a strategy is defined by StrategyV5Abstract and
As4626Abstract . The strategy contract inherents these two contracts for its
storage variable definition.

The StrategyV5Chainlink inherents storage of 2 above contracts and adds 4
other storage variables:

IChainlinkAggregatorV3 internal assetPriceFeed; // Aggregator contract of the
// asset asset
IChainlinkAggregatorV3[8] internal inputPriceFeeds; // Aggregator contract of
// the inputs
uint8 internal assetFeedDecimals; // Decimals of the asset asset
uint8[8] internal inputFeedDecimals; // Decimals of the input asset

Inspecting the storage layout of StrategyV5Chainlink , at slot 55 it stores the
inputPriceFeeds state variable.

However, in the implementation contract StrategyV5Agent . It adds one
storage slot mapping(address => RescueRequest) private rescueRequests . It
also uses the slot 55 and collides with inputPriceFeeds in
StrategyV5Chainlink .

In this case, due to the rescueRequests is a mapping, the real data of the
mapping is stored in slot = keccak256([key, mappingSlot]) , so no data is
corrupted. However, it may introduce some unpredictability if other data type
is added to the StrategyV5Agent in latter version and should be avoid. It's
crucial to maintain a clear and collision-free storage layout to ensure contract
stability and predictability.

37

