13 OMNISCIA

June 13, 2024

SMART CONTRACT
AUDIT REPORT

Astrolab DAO
Base Strategy Contracts

=]

ww| Oomniscia.io

] info@omniscia.io

Online report: astrolab-dao-base-strategy-contracts

mailto:info@omniscia.io
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f

Omniscia.io is one of the fastest growing and most trusted blockchain
security firms and has rapidly become a true market leader. To date, our
team has collectively secured over 370+ clients, detecting 1,500+ high-
severity issues in widely adopted smart contracts.

Founded in France at the start of 2020, and with a track record spanning
back to 2017, our team has been at the forefront of auditing smart
contracts, providing expert analysis and identifying potential vulnerabilities
to ensure the highest level of security of popular smart contracts, as well
as complex and sophisticated decentralized protocols.

Our clients, ecosystem partners, and backers include leading ecosystem
players such as L'Oreal, Polygon, AvalLabs, Gnosis, Morpho, Vesta, Gravita,
Olympus DAO, Fetch.ai, and LimitBreak, among others.

To keep up to date with all the latest news and announcements follow us
on twitter @omniscia_sec.

(D]

ww| OmMniscia.io

E info@omniscia.io

Online report: astrolab-dao-base-strategy-contracts

https://omniscia.io/
https://twitter.com/home
mailto:info@omniscia.io
https://omniscia.io/
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f

Base Strategy Contracts Security Audit

Audit Report Revisions

Commit Hash Date Audit Report Hash
5427ca2aaa March 2nd 2024 190edc3e59
59b75fbee April 17th 2024 24abe7bc2d
efbeab6478 May 14th 2024 ad4b534feab
cf5194da53 June 5th 2024 86d778b017
cf5194da53 June 13th 2024 dfce318558

cf5194dab3 June 13th 2024 090dbf4cca

Audit Overview

We were tasked with performing an audit of the Astrolab DAO codebase and in particular their Base

Strategy Contracts module.

The project implements a base set of contracts meant to act as the backbone for EIP-4626 vaults that

interact with multiple DeFi protocols via a custom proxy model.

Over the course of the audit, we identified vulnerabilities across multiple modules of the system including
incorrect assembly blocks, incorrect downward price action handling, proxy-forwarded data corruption,

and more.

The system implements a custom proxy model whereby the Strategy contract and the logic contract are
separate, however, this is done so by retaining two different implementations that utilize a shared storage

space.

In the current system, the logic contract (el " this case) will inherit two implementations
that declare storage variables while the proxy contract (EiREiaaesagd ill inherit three implementations.

This can trivially result in clash of storage space which could ultimately result in data corruption and/or

loss.

We recommend the storage of the contracts to be decoupled entirely in a single dedicated

implementation, permitting it to be maintained and expanded as required between updates.

We advise the Astrolab DAO team to closely evaluate all minor-and-above findings identified in the report

and promptly remediate them as well as consider all optimizational exhibits identified in the report.

https://eips.ethereum.org/EIPS/eip-4626

Post-Audit Conclusion

The chapters of the audit report are presented in historical order from oldest to
latest. To evaluate the latest state of the codebase, kindly proceed to the last
chapter of the audit report.

The Astrolab DAO team iterated through all findings within the report and provided us with a revised

commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Astrolab DAO and have identified that certain exhibits have not

been adequately dealt with. We advise the Astrolab DAO team to revisit the following exhibits which have
either been partially alleviated, not alleviated, or incorrectly alleviated: (XY iy (Y.

Additionally, the following findings remain either partially addressed or unaddressed and

should be revisite: (RIS, (TR, (YR, CYRTES, CXERNS. (T Yo, (s

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-12M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-08M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-07M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C

Post-Audit Conclusion (efbeab6478)

The Astrolab DAO team provided us with a follow-up commit to evaluate additional remediations carried
out for the instances that remained open in the previous round, as well as general adjustments in relation
to the EIP-7540 compliancy of the implementation.

We observed that exhibit which concerns EIP-7540 compliancy is still not resolved despite the
change in the project's direction to solely support redemption requests as the EIP is still not satisfied in

this regard.

In addition to the aforementioned exhibits that remain open, the following exhibits have been marked as

acknowledged explicitly by the Astrolab DAO team: (iRt (Nearrs) EEEREt (EEREs EEERES),

Finally, in between the production of the previous final iteration and the current version, we came in

contact with the Pyth Network team to clarify what limitations should be imposed on their oracles.

The Pyth Network team contradicted the SDK implementation and instead clarified that the exponents

supported by the Pyth Network oracle software are within the following range:

In light of this information, we advise the function to be updated with those

exponents in mind properly supporting positive as well as negative exponents which it presently does not.

https://eips.ethereum.org/EIPS/eip-7540
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://eips.ethereum.org/EIPS/eip-7540
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/PythProvider.sol#L66-L93

Post-Audit Conclusion (cf5194da53)

The Astrolab DAO team revisited a subset of the exhibits mentioned in the previous chapter; namely:

All aforementioned exhibits have been properly alleviated in the latest commit hash of the codebase that

was evaluated, and any that were not mentioned have been marked as acknowledged.

Additionally, the related concerns have been addressed by incorporating support for

positive exponents as well as adjusting the range of permitted exponent values.

We consider all outputs of the audit report properly consumed by the Astrolab DAO team, and no further

remediative actions are expected.

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C

Audit Synopsis

Severity Identified
@ Uunknown 0
@ nformational 64
23
@ Medium 0
@ Major 9

Alleviated

52

22

Partially Alleviated Acknowledged
0 0
0 12
0 1
0 0
0 0

During the audit, we filtered and validated a total of 7 findings utilizing static analysis tools as well as

identified a total of 89 findings during the manual review of the codebase. We strongly recommend that

any minor severity or higher findings are dealt with promptly prior to the project's launch as they can

introduce potential misbehaviours of the system as well as exploits.

Scope

The audit engagement encompassed a specific list of contracts that were present in the commit hash of
the repository that was in scope. The tables below detail certain meta-data about the target of the

security assessment and a navigation chart is present at the end that links to the relevant findings per file.

Target

* Repository: https://github.com/AstrolabDAO/strats

e Commit: 5427ca2aaaafaObe3b90fc057a8b79f4088cba32

e Language: Solidity

e Network: arbitrum, optimism, base, polygon, linea, scroll, mantle, gnosis, moonbeam
e Revisions: 5427ca2aaa, 59b75fbeel, efbeab6478, cf5194da53

Contracts Assessed
File Total Finding(s)
src/abstract/As4626.sol (A62) 17
src/libs/AsCast.sol (ACT) 1
src/libs/AsMaths.sol (AMS) 6
src/abstract/AsProxy.sol (APY) 4
src/abstract/AsTypes.sol (ATS) 0
src/libs/AsArrays.sol (AAS) 7
src/abstract/AsRescuable.sol (ARE) 6
src/libs/AsAccounting.sol (AAG) 1
src/abstract/AsManageable.sol (AME) 5

src/abstract/As4626Abstract.sol (AAT) 4

https://github.com/AstrolabDAO/strats
https://github.com/AstrolabDAO/strats/tree/5427ca2aaaafa0be3b90fc057a8b79f4088cba32
https://github.com/AstrolabDAO/strats/tree/59b75fbee1d8f3dee807c928f18be41c58b904e1
https://github.com/AstrolabDAO/strats/tree/efbeab6478c33d629e4423f01f3c819a8d365093
https://github.com/AstrolabDAO/strats/tree/cf5194da53ebf026da6c8efa74daada96719cc71
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsTypes.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol

srcf/abstract/AsAccessControl.sol (AAC)

src/libs/AsSequentialSet.sol (ASS)

src/abstract/AsRescuableAbstract.sol (ARA)

src/libs/ChainlinkUtils.sol (CUS)

src/libs/PythUtils.sol (PUS)

srcf/abstract/StrategyV5.sol (SV5)

srcf/abstract/StrategyV5Pyth.sol (SVP)

srcf/abstract/StrategyV5Agent.sol (SVA)

srcf/abstract/StrategyV5Abstract.sol (SVT)

src/abstract/StrategyV5Chainlink.sol (SVC)

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuableAbstract.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol

Compilation

The project utilizes as its development pipeline tool, containing an array of tests and scripts

coded in TypeScript.

To compile the project, the command needs to be issued via the CLI tool to CEEgeees:

npx hardhat compile

The tool automatically selects Solidity version based on the version specified within the

hardhat.config.ts RillEH

The project contains discrepancies with regards to the Solidity version used as the statements of
the contracts are open-ended (I -

We advise them to be locked to (EIERER)). the same version utilized for our static analysis as well

as optimizational review of the codebase.

During compilation with the pipeline, no errors were identified that relate to the syntax or

bytecode size of the contracts.

To note, the compiler version utilized makes use of the Shanghai target EVM and thus will introduce the

opcode which is incompatible with certain Layer-2 chains.

We advise the Astrolab DAO team to evaluate whether the chains they wish to deploy their contracts to
properly support the operation code when they intend to deploy so as to avoid any deployment failures

and thus waste of resources.

Static Analysis

The execution of our static analysis toolkit identified 83 potential issues within the codebase of which 67

were ruled out to be false positives or negligible findings.

The remaining 16 issues were validated and grouped and formalized into the 7 exhibits that follow:

ID

A62-01S

AAT-01S

AMS-01S

ARE-01S

ARE-02S

SV5-01S

SVC-01S

Severity

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

Minor

@ 'nformational

@ 'nformational

Addressed

& VYes

& VYes

& VYes

& VYes

& VYes

& VYes

& VYes

Title

Inexistent Event Emissions

Inexistent Event Emission

lllegible Numeric Value Representation

Inexistent Visibility Specifiers

Deprecated Native Asset Transfer

Inexistent Event Emission

Inexistent Event Emission

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/As4626-A62#A62-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/As4626Abstract-AAT#AAT-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsMaths-AMS#AMS-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsRescuable-ARE#ARE-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsRescuable-ARE#ARE-02S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/StrategyV5-SV5#SV5-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/StrategyV5Chainlink-SVC#SVC-01S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and

vulnerabilities in Astrolab DAQ's base strategy contracts.

As the project at hand implements custom proxies w/ extensive assembly blocks, intricate care was put
into ensuring that the flow of funds within the system conforms to the specifications and restrictions
laid forth within the protocol's specification and that the EVM's restrictions are adhered to in all

statements.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed multiple significant vulnerabilities
within the system which could have had severe ramifications to its overall operation; we urge the

Astrolab DAO team to promptly evaluate and remediate them.

Additionally, the system was investigated for any other commonly present attack vectors such as re-
entrancy attacks, mathematical truncations, logical flaws and ERC [EIP standard inconsistencies. The
documentation of the project was satisfactory to the extent it need be, however, certain areas of the

codebase such as expected EIP-7540 conformity should be expanded upon.

A total of 89 findings were identified over the course of the manual review of which 36 findings
concerned the behaviour and security of the system. The non-security related findings, such as

optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

A62-01M Minor @ ves Discrepancy of Access Control
A62-02M Minor @ ves Improper Allowance Adjustment
A62-03M Minor @ vYes Improper Capture of Entry Fee
A62-04M Minor @ ves Improper Capture of Exit Fee

A62-05M Minor @ vYes Incorrect Estimation of Deposits

https://eips.ethereum.org/
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-05M

A62-06M

A62-07M

A62-08M

A62-09M

A62-10M

A62-11M

A62-12M

AAT-01M

AAS-01M

Minor

Minor

Minor

Minor

@ Major

@ Major

@ Major

Minor

@ Major

@ vYes

& VYes

@ VYes

& VYes

@ vYes

@ VYes

& VYes

& ves

@ vYes

Incorrect Estimation of Withdrawals

Incorrect Maintenance of Allowances in Redemption Requests

Inexistent Protection Against Re-Initialization

Potentially Invalid Cancellation Assumption

Improper Accounting of Fees in Downward Price Action

Incorrect Implementation of EIP-7540

Inexistent Reservation of Shares

EIP-7540 Incompatibility

Incorrect EVM Memory Assumptions

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-06M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-07M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-08M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-09M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-10M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-12M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626Abstract-AAT#AAT-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-01M

AAS-02M

ACT-01M

AME-01M

AME-02M

AMS-01M

APY-01M

APY-02M

APY-03M

ASS-01M

@ Major

Minor

@ 'nformational

@ Major

@ 'nformational

@ 'nformational

Minor

@ Major

@ 'nformational

& VYes

& VYes

& VYes

& VYes

® Nullified

® Nullified

® Nullified

& VYes

Incorrect Usage of Memory

Potentially Insecure Address Cast

Invalid Conditional Evaluation

Detachment of Authorized Role

Improper Absolute Function Implementation

Reservation of Function Signatures

Potentially Insecure Utilization of Scratch Space

Insecure Forwarded Payload

Improper Sequential Set Shift Operation

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsCast-ACT#ACT-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsMaths-AMS#AMS-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-01M

ASS-02M

ASS-03M

ASS-04M

SV5-01M

SV5-02M

SV5-03M

SVA-01M

SVA-02M

SVA-03M

Minor

@ Major

@ Major

@ nformational

Minor

Minor

Minor

Minor

Minor

& vYes

& vYes

& vYes

& vYes

& vYes

& vYes

& vYes

& vYes

Inexistent Prevention of Duplicate Elements

Invalid Sequential Set Shift Operation

Invalid Sequential Set Unshift Operation

Implementation & Documentation Mismatch

Discrepancy of Liquidation Preview

Insecure Casting Operations

Discrepant Allowance Maintenance

Improper No-Op Logic Statement

Inexistent Erasure of Previous Approvals

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-03M

SVA-04M

SVA-O5M

SVC-01M

SvVC-02M

Minor

Minor

Minor

Minor

& vYes

& vYes

& vYes

& vYes

Inexistent Protection Against Re-Initialization

Insecure Approval Operations

Inexistent Prevention of Data Corruption

Inexistent Validation of Prices

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-05M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Chainlink-SVC#SVC-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Chainlink-SVC#SVC-02M

Code Style

During the manual portion of the audit, we identified 53 optimizations that can be applied to the

codebase that will decrease the operational cost associated with the execution of a particular function

and generally ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should

make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID

A62-01C

A62-02C

A62-03C

A62-04C

AAT-01C

AAT-02C

AAC-01C

AAC-02C

AAC-03C

AAG-01C

Severity

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

Addressed

& VYes

® Nullified

& VYes

& VYes

& VYes

& VYes

& VYes

& VYes

& VYes

& VYes

Title

Inefficient Lookups

Redundant Duplication of Code

Redundant Parenthesis Statements

Repetitive Value Literal

Generic Typographic Mistakes

Improper Declaration of Abstract Function

Inefficient Usage of Utility Functions

Redundant Input Argument

Redundant Local Variable

Repetitive Value Literal

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626Abstract-AAT#AAT-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626Abstract-AAT#AAT-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccounting-AAG#AAG-01C

AAS-01C

AAS-02C

AAS-03C

AAS-04C

AAS-05C

AME-01C

AME-02C

AME-03C

AMS-01C

AMS-02C

AMS-03C

AMS-04C

APY-01C

ARE-01C

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

® Nullified

& ves

& ves

& ves

& ves

& ves

& ves

& ves

& ves

® Nullified

® Nullified

Ineffectual Usage of Safe Arithmetics

Inefficient Iteration of Search Loops

Inefficient Iterator Type

Inexistent Error Messages

Loop Iterator Optimizations

Generic Typographic Mistakes

Inexistent Error Message

Redundant Parenthesis Statements

Generic Typographic Mistakes

Ineffectual Usage of Safe Arithmetics

Inexistent Error Messages

Redundant Parenthesis Statements

Inefficient Generation of Selector

Improper Declarations of Abstract Functions

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsProxy-APY#APY-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-01C

ARE-02C

ARE-03C

ARE-04C

ARA-01C

ASS-01C

ASS-02C

ASS-03C

ASS-04C

ASS-05C

CUs-01C

CuUS-02C

PUS-01C

PUS-02C

SV5-01C

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

@ nformational

& vYes

& vYes

& vYes

& vYes

& vYes

& vYes

& vYes

Inefficient Erasure of Request

Inefficient Lookups

Inexistent Error Messages

Optimization of Data Structure

Ineffectual Usage of Safe Arithmetics

Inefficient Loop Limit Evaluations

Inexistent Error Message

Loop Iterator Optimization

Redundant Deletion Operation

Ineffectual Usage of Safe Arithmetics

Repetitive Value Literal

Ineffectual Usage of Safe Arithmetics

Repetitive Value Literal

Generic Typographic Mistake

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-01C

SV5-02C

SV5-03C

SV5-04C

SV5-05C

SV5-06C

SV5-07C

SVT-01C

SVA-01C

SVA-02C

SVC-01C

SVC-02C

SVC-03C

SVP-01C

SVP-02C

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

@ 'nformational

& ves

& ves

& ves

& ves

& ves

@® Nullified

& ves

& ves

& ves

& ves

& ves

& ves

& ves

Improper Declarations of Abstract Functions

Ineffectual Usage of Safe Arithmetics

Inefficient Iterator Type

Loop Iterator Optimizations

Redundant Application of Access Control

Redundant Parenthesis Statement

Generic Typographic Mistakes

Inefficient Iterator Type

Loop Iterator Optimizations

Generic Typographic Mistake

Loop Iterator Optimization

Repetitive Value Literal

Generic Typographic Mistake

Loop Iterator Optimizations

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-07C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Abstract-SVT#SVT-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-02C

SVP-03C @ nformational @ vYes Repetitive Value Literal

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-03C

As4626 Static Analysis Findings
A62-01S: Inexistent Event Emissions

Type Severity Location

Language Specific As4626.s0l:L353-L356, L362-L364, L370-L372, L378-L380, L4

Description:

The linked functions adjust sensitive contract variables yet do not emit an event for it.

Example:

src/abstract/As4626.sol

SOL

function setMaxSlippageBps (uintl6 slippageBps) external onlyManager {

maxSlippageBps = slippageBps;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L353-L356
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L362-L364
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L370-L372
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L378-L380
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L411-L414

Recommendation:

We advise an to be declared and correspondingly emitted for each function to ensure off-chain

processes can properly react to this system adjustment.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

As4626Abstract Static Analysis Findings
AAT-01S: Inexistent Event Emission

Type Severity Location

Language Specific As4626Abstract.sol:L98-L100

Description:

The linked function adjusts a sensitive contract variable yet does not emit an event for it.
Example:

src/abstract/As4626Abstract.sol

SOL

function setExemption (address _account, bool isExempt) public onlyAdmin {

exemptionList[account] = isExempt;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L98-L100

Recommendation:

We advise an to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

AsMaths Static Analysis Findings
AMS-01S: lllegible Numeric Value Representation
Type Severity Location

Code Style : AsMaths.sol:L22

Description:

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the

codebase.

Example:

src/libs/AsMaths.sol

SOL

uint256 internal constant BP_BASIS = 10 000;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L22

Recommendation:

To properly illustrate the value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of , we advise fractions to be utilized directly (i.e. gl
becomes) as they are supported. For values meant to represent a percentage base, we advise
each value to utilize the underscore (!) separator to discern the percentage decimal (i.e. becomes
(100_00]} becomes and so on). Finally, for large numeric values we simply advise the underscore
character to be utilized again to represent them (i.e. becomes HEERIRER) -

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The referenced value literal has been updated in its representation to in accordance with the

recommendation's underscore style, addressing this exhibit.

AsRescuable Static Analysis Findings
ARE-01S: Inexistent Visibility Specifiers

Type Severity Location

Code Style AsRescuable.sol:L21, L22

Description:

The linked variables have no visibility specifier explicitly set.

Example:

src/abstract/AsRescuable.sol

SOL

uint64 constant RESCUE TIMELOCK = 2 days;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L21
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L22

Recommendation:

We advise them to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between versions.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The visibility specifier has been introduced to all referenced variables, preventing potential

compilation discrepancies and addressing this exhibit.

ARE-02S: Deprecated Native Asset Transfer
Type Severity Location

Language Specific AsRescuable.sol:L88

Description:

The linked statement performs a low-level native asset transfer via the function exposed by the

address payable [eEIECRIY IR

Impact:

As new EIPs such as EIP-2930 are introduced to the blockchain, gas costs can change and the
instruction of Solidity specifies a fixed gas stipend that is prone to failure should such changes be
integrated to the blockchain the contract is deployed in. A prime example of this behaviour are legacy
versions of Gnosis which were susceptible to this issue and would cause native transfers to fail if sent to a

new address.

Example:

src/abstract/AsRescuable.sol

SOL

payable (req.receiver) .transfer (address (this) .balance) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L88

Recommendation:

We advise alternative ways of transferring assets to be utilized instead, such as OpenZeppelin's

library and in particular the method exposed by it. If re-entrancies are desired to
be prevented based on gas costs, we instead advise a mechanism to be put in place that either credits an
account with a native balance they can withdraw at a secondary transaction or that performs the native

asset transfers at the end of the top-level transaction's execution.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The native payment has been replaced by a low-level interaction that supplies the full available gas
allowance to the call thus ensuring it will succeed regardless of the underlying blockchain the contract is

deployed in or the nature of the recipient.

StrategyV5 Static Analysis Findings

SV5-01S: Inexistent Event Emission

Type Severity Location
Language Specific StrategyV5.s0l:L98-L101
Description:

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

Example:

src/abstract/StrategyV5.sol

SOL

function updateAgent (address agent) external onlyAdmin ({
(

if (_agent == address(0)) revert AddressZero();

agent = agent;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L98-L101

Recommendation:

We advise an to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

StrategyV5Chainlink Static Analysis Findings

SVC-01S: Inexistent Event Emission

Type Severity Location
Language Specific P Inf tior StrategyV5Chainlink.sol:L55-L59
Description:

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

Example:

src/abstract/StrategyV5Chainlink.sol

SOL

function setPriceFeed(address _address,
_validity) public onlyAdmin {
feedByAsset[address] _feed;
decimalsByFeed[feed] = feedByAsset|[address].decimals();

validityByFeed[feedByAsset[address]] = validity;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59

Recommendation:

We advise an to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

As4626 Manual Review Findings
A62-01M: Discrepancy of Access Control
Type Severity Location

Logical Fault As4626.s0l:L231, L249, L266, L284-L289

Description:

The YIRS and PV IERE Ty functions prevent invocation if the of the shares

being withdrawn is not the [Nty however, their EREay-prefixed counterparts do not perform such

validation.

Additionally, the implementation properly supports allowance consumptions so the

presence of access control is contradictory.

Impact:

While the discrepancy itself does not result in any vulnerability due to proper allowance management in
the function, we still consider it to be a non-informational issue in the code as it

could have had a significant impact to its security.

Example:

src/abstract/As4626.sol

SOL

function withdraw (

uint256 amount,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L226-L233
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L261-L268
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L231
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L249
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L266
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L284-L289

Example (Cont.):

address receiver,
address owner
) external whenNotPaused returns (uint256) {
if (owner != msg.sender) revert Unauthorized();
return withdraw(amount, previewWithdraw(amount, owner), receiver,
_owner) ;

}

function safeWithdraw (
uint256 amount,
uint256 minAmount,
address receiver,
address owner
) public whenNotPaused returns (uint256 amount) {
amount = withdraw(amount, previewWithdraw(amount, owner), receiver,
_owner) ;

if (amount < minAmount) revert AmountTooLow (amount) ;

Recommendation:

We advise access control to either be imposed on all variants of these functions or to be omitted entirely,

either of which we consider an adequate resolution to this exhibit.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

Both functions and their [EEkgg-prefixed counterparts now properly support allowance-based authorization

of the (PRI ensuring uniform behaviour across the functions by addressing this exhibit.

A62-02M: Improper Allowance Adjustment

Type Severity Location

Logical Fault As4626.s0l:L690-L694

Description:

An T R e e trd operation will consume the allowance between the and

the only if the is greater than [§J, however, the adjustment will be for the full

amount.

Impact:

The present mechanism will most likely consume a higher allowance than it should incorrectly.

Example:

src/abstract/As4626.sol

SOL

if (opportunityCost > 0 && owner != msg.sender) {

uint256 currentAllowance = allowance(owner, operator);

_approve (_owner, operator, currentAllowance - shares);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L663-L697
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L690-L694

Recommendation:

We adyvise this approach to be revised as it is presently invalid. The code should either revoke an approval
equivalent to the (S annERR g O should unconditionally revoke the full approval of the [Sitaay-

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The approval adjustment properly utilizes the in the latest implementation, addressing
this exhibit.

A62-03M: Improper Capture of Entry Fee

Type Severity Location
Mathematical Operations As4626.s0l:L130
Description:

Any deposit-related function that utilizes will suffer truncation in contrast to
the function as the basis point percentages are applied in a rounding-prone way.

Impact:

Fees captured from deposits and their respective deposit amount may not sum up to the actual amount

the user supplied due to truncation.

Example:

src/abstract/As4626.sol

SOL

function previewDeposit (uint256 amount, address receiver) public view returns

(uint256 shares) {

return convertToShares(amount, false).subBp (exemptionList[receiver] ? 0

fees.entry) ;

}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L130

Recommendation:
The flaw arises from the following misconception:

x % 100

We advise the basis-point related calculations to be streamlined across the codebase, ensuring that

truncation is accounted for by utilizing the remainder of the amount after the fee's application.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The code has been refactored to no longer use the [giag-related functions in the input of the
function, calculating the fee locally instead.

In this implementation, the actual deposited amount is calculated as the original amount minus the fee
captured, ensuring that any truncation which may occur is solely reflected in the fee and does not impact

the deposited amount.

As such, we consider this exhibit fully alleviated.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L85-L117

A62-04M: Improper Capture of Exit Fee
Type Severity Location

Mathematical Operations As4626.s0l:L267, L285

Description:

Any withdrawal-related function that utilizes will suffer truncation in contrast to

the PP ARRR S SR L ERAtsbaEd fLUNCtioN as the basis point percentages are applied in a rounding-prone
way.

Impact:

Fees captured from withdrawals and their respective withdrawal amount may not sum up to the actual

amount that the user is entitled to due to truncation.

Example:

src/abstract/As4626.sol

SOL

function redeem/(

uint256 shares,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L267
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L285

Example (Cont.):

address receiver,
address owner

) external whenNotPaused returns (uint256 assets) {
if (owner != msg.sender) revert Unauthorized():;

return withdraw(previewRedeem(shares, owner), shares, receiver, _owner);

function safeRedeem (
uint256 shares,
uint256 minAmountOut,
address receiver,
address owner
) external whenNotPaused returns (uint256 assets) {
assets = withdraw (
previewRedeem(shares, owner),
_shares,
__receiver,
_owner
) ;

if (assets < minAmountOut) revert AmountTooLow (assets);

Example (Cont.):

SOL

Recommendation:
The flaw arises from the following misconception:

x % 100

We advise the basis-point related calculations to be streamlined across the codebase, ensuring that

truncation is accounted for by utilizing the remainder of the amount after the fee's application.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The code has been refactored to no longer use the [giag-related functions in the input of the

LYY VIR ERS b2 function, calculating the fee locally instead.

In this implementation, the actual withdrawn amount is calculated as the original amount minus the fee
captured, ensuring that any truncation which may occur is solely reflected in the fee and does not impact

the withdrawn amount.

As such, we consider this exhibit fully alleviated.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L158-L216

A62-05M: Incorrect Estimation of Deposits

Type Severity Location
Mathematical Operations As4626.so0l:L452, L473
Description:

The function will incorrectly estimate the amount of shares the operation will
result in as it will apply the entry fee on the shares minted rather than the tokens deposited, causing

truncation issues to lead to different results.

Impact:

As shares will most likely have a lower accuracy than the assets deposited, the truncation will be more

severe and thus underestimate the amount of shares that will be minted.

Example:

src/abstract/As4626.sol

SOL

function previewDeposit (uint256 amount, address receiver) public view returns

(uint256 shares) {
return convertToShares(amount, false).subBp (exemptionList[receiver] ? 0 :
fees.entry) ;

}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L472-L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L452
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L473

Recommendation:

We advise the code to properly apply the entry fee to the input [t simulating the behaviour of the

function.
Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):
The entry fee is correctly applied to the input of the function in the

latest implementation, addressing this exhibit.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L85-L117
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L472-L474

A62-06M: Incorrect Estimation of Withdrawals

Type Severity Location
Mathematical Operations As4626.s0l:L495, L516
Description:

The function will incorrectly estimate the amount of shares the operation will
burn as it will apply the exit fee on the shares burned rather than the tokens withdrawn, causing

truncation issues to lead to different results.

Impact:

As shares will most likely have a lower accuracy than the assets deposited, the truncation will be more

severe and thus overestimate the amount of shares that will be burned.

Example:

src/abstract/As4626.sol

SOL

function previewWithdraw(uint256 assets, address owner) public view returns

(uint256) {

return convertToShares(assets, true) .revAddBp (exemptionList[owner] ? 0 :

fees.exit) ;

}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L494-L496
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L495
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L516

Recommendation:

We advise the code to properly apply the exit fee to the output [Eiserag, simulating the behaviour of the

function.
Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):
The exit fee is correctly applied to the input of the function in the

latest implementation, addressing this exhibit.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L494-L496

A62-07M: Incorrect Maintenance of Allowances in Redemption
Requests

Type Severity Location

Logical Fault As4626.s0l:L179, L670, L693

Description:

The creation of a redemption request will correctly ensure the caller (i.e. ([agiaeg has been authorized
to create the request (in case they are not the themselves), however, the same approval will be

incorrectly validated for cancellations as well as processing of these requests.

Impact:

A redemption request that was planned for another user can be trivially hijacked by the original if

they revoke their allowance, a trait we consider invalid in the system albeit with a small consequence.

Example:

src/abstract/As4626.sol

SOL

function requestRedeem (

uint256 shares,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L179
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L670
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L693

Example (Cont.):

bytes memory data
) public nonReentrant whenNotPaused returns (uint256 requestId) {
if (operator != msg.sender || (owner != msg.sender && allowance (_ owner,
_operator) < shares))
revert Unauthorized() ;
if (_shares == 0 || balanceOf (owner) < shares)

revert AmountTooLow (_ shares) ;

Erc7540Request storage request = req.byOwner[owner];

if (request.operator != operator) request.operator = operator;

last.sharePrice = sharePrice() ;
if (request.shares > 0) {
if (request.shares > shares)

revert AmountTooLow (_ shares) ;

req.totalRedemption —-= AsMaths.min (
reqg.totalRedemption,
request.shares

) ¢

request.sharePrice =
((last.sharePrice * (shares - request.shares)) + (request.sharePrice
* request.shares)) /
_shares;
} else {

request.sharePrice = last.sharePrice;

Example (Cont.):

_requestId = ++requestId;
request.requestId = requestId;
request.shares = shares;
request.timestamp = block.timestamp;

req.totalRedemption += shares;
if (_data.length != 0) {

1f (IERC7540RedeemReceiver (msg.sender) .onERC7540RedeemReceived (operator,
_requestlId, data) != 0x0102fded)
revert Unauthorized() ;

}

emit RedeemRequest (owner, operator, owner, shares);

function requestWithdraw (
uint256 amount,
address operator,
address _owner,
bytes memory data

) external returns (uint256)

Example (Cont.):

return requestRedeem (convertToShares (amount, false), operator, owner,

_data) ;
}

function cancelRedeemRequest (
address operator,
address owner

) external nonReentrant {
Erc7540Request storage request = req.byOwner[owner];

uint256 shares = request.shares;

(_owner != msg.sender && allowance (owner,

if (operator != msg.sender ||

_operator) < shares))
revert Unauthorized();

if (shares revert AmountTooLow (0) ;

Example (Cont.):

last.sharePrice = sharePrice() ;
uint256 opportunityCost = 0;

if (last.sharePrice > request.sharePrice) {

opportunityCost = shares.mulDiv (
last.sharePrice - request.sharePrice,
weiPerShare

) i

_burn(owner, opportunityCost);

reg.totalRedemption -= shares;
if (isRequestClaimable (request.timestamp))

reqg.totalClaimableRedemption -= shares;

if (opportunityCost > 0 && owner != msg.sender) {
uint256 currentAllowance = allowance(owner, operator);
_approve (_owner, operator, currentAllowance - shares);
}
request.shares = 0;

emit RedeemRequestCanceled(owner, shares);

Recommendation:

We advise the code to consume the allowance during a redemption request's creation, and to permit the
creator of the request (i.e. caller of [N ITITI Tr o) to either cancel or claim the request.

Alleviation (59b75fbee1):

While allowance is properly consumed during the creation of a redemption request, allowance remains

VLI R RaEY As4626 : : cancelRedeemRequest |

As a redemption request should be possible to cancel even if the original requester does not have any
allowance anymore, we re-iterate our original advice to omit allowance checks and supplement it with a

recommendation to apply the allowance adjustment opportunistically (i.e. if

currentAllowance - opportunityCost < O REIVEIE]alolVloNel-Rele]alile[VIf=To 0] @).

Alleviation (efbeab6478):

The code has been alleviated per our recommendation, omitting the allowance related checks during
redemption request cancellations and ensuring that the allowance of the is reduced up to §)

safely.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L663-L697

A62-08M: Inexistent Protection Against Re-Initialization
Type Severity Location

Logical Fault As4626.s0l:L46-L62

Description:

The function does not prevent against re-initialization, causing the timestamps of the
data entry to be corrupted as well as permitting the name, symbol, and decimals of the

representation of the contract to be adjusted post-deployment.

Impact:

A severity of minor has been assigned as the function is privileged, however, its impact is significant as

fees can be lost and impersonation attacks can be performed.

Example:

src/abstract/As4626.sol

SOL

function init(

Erc20Metadata calldata erc20Metadata,

CoreAddresses calldata coreAddresses,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L46-L62
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L46-L62

Example (Cont.):

Fees calldata fees

) public virtual onlyAdmin {

setFees (fees);

feeCollector = coreAddresses.feeCollector;
reqg.redemptionLocktime = 6 hours;
last.accountedSharePrice = weiPerShare;
last.accountedProfit = weiPerShare;
last.feeCollection = uint64 (block.timestamp) ;
last.liquidate = uint64 (block.timestamp) ;
last.harvest = uint64 (block.timestamp) ;

last.invest = uint64 (block.timestamp) ;

ERC20. init(erc20Metadata.name, erc20Metadata.symbol,

_erc20Metadata.decimals) ;

}

Recommendation:

We advise the function to prevent re-invocation via a dedicated variable, ensuring the contract cannot be

re-initialized.

Alleviation (59b75fbee1):

The Astrolab DAO team specified that they intend to supply an public that will prevent
re-initialization, however, no such change has been incorporated in the codebase yet.

As such, we consider this exhibit open in the codebase's current state.

Alleviation (efbeab6478):

An B clause was introduced ensuring that the flag of the parent implementation is
and reverting otherwise.

As such, we consider this exhibit properly alleviated.

A62-09M: Potentially Invalid Cancellation Assumption

Type Severity Location

Logical Fault As4626.s0l:L687, L688

Description:

L) 254626 : cancelRedeemRequest KNIV EICRULE data entry even if the
redemption request has not been factored in a liquidation call as the LI FRERI e - T-1a el EER Y S K
function does not guarantee a liquidation has taken place.

Impact:

Redemption requests that should be able to be cancelled may result in an uncaught underflow due to an
incorrect assumption in relation to whether a liquidation that satisfies the redemption has been performed

or not.

Example:

src/abstract/As4626.sol

SOL

if (isRequestClaimable (request.timestamp))

reg.totalClaimableRedemption -= shares;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L663-L697
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L747-L755
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L687
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L688

Recommendation:

We advise the code to ensure a liquidation has happened after the request has occurred, ensuring that

the has a high likelihood of incorporating the shares that were meant to be
liquidated.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The conditional has been updated to ensure that the redemption amount has been factored in a
liguidation call by validating whether the request's timestamp is older than the last liquidation that

occurred.

A62-10M: Improper Accounting of Fees in Downward Price Action

Type Severity Location

Logical Fault @ Major As4626.s0l:L301, L304, L321

Description:

The LEIIFIHEIRTIRRNII Y function will become permanently inaccessible if a downward price action
has occurred while a non-zero [NESEIIRINEIIRZIN Value exists. Such an action will cause the

VTV FR I BRI Y fnction to continue execution while all values yielded by the

AsAccounting: : computeFees JiVgliloRIEILE a resulting in the ERIRINSIEEra3akey being configured to

This will cause any invocation of [Nt aoe A o first compute a equal to the

share price itself (which is invalid), and then cause the code to yield a division-by-zero error due to
attempting to calculate the [ERg-

Impact:

All fees will become permanently inaccessible if a downward action occurs for the share and at least a

single withdrawal [/ deposit has occurred for the vault which is a highly likely scenario.

Example:

src/abstract/As4626.sol

SOL

function collectFees() internal nonReentrant returns (uint256 toMint) ({

if (feeCollector == address(0))

revert AddressZzero ()

(uint256 assets, uint256 price, uint256 profit, uint256 feesAmount) =

AsAccounting.computeFees (IAs4626 (address (this))) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L301
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L304
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L321

Example (Cont.):

toMint = convertToShares (feesAmount + claimableAssetFees, false);

if (toMint == 0)

return 0;

emit FeeCollection (
feeCollector,
assets,
price,
profit,
feesAmount,
toMint

) ;

~mint (feeCollector, toMint);

last.feeCollection = uint64 (block.timestamp) ;
last.accountedAssets = assets;
last.accountedSharePrice = price;
last.accountedProfit profit;
last.accountedSupply totalSupply () ;

claimableAssetFees = 0;

Recommendation:

We advise either the EX.VCIIILNEE Y RIS S BTN NN i plementation to yield non-zero values with a zero

IR when returning early, or the (NI TGO s function to return early if just
<@

While we advise the former of the two to prevent time-based fees from accumulating when the share
moves in a downward manner, different approaches can also be utilized such as waiting until the share

price rebounds to the latest tracked one before charging fees.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The relevant function has been relocated 10 the [EiRaciaIopaAr:Nertetel (FIEacta-YetvAl)-NerN PN CIoN MR-V VY)

contract and the relevant function has been renamed to

AsAccounting::claimableDynamicFees§

In the renamed implementation, a case of no fees will properly yield the correct as well as

value, permitting the logic to function properly thus alleviating this exhibit in full.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325

A62-11M: Incorrect Implementation of EIP-7540

Type Severity Location

Logical Fault @ Major As4626.s0l:L585-L590, L625

Description:

The contract is meant to comply with the EIP-7540 standard, however, it deviates from it in both

its as well as the implementations of the various functions as denoted in the standard.

As an example, the I IFRE TN Rt 33 function will invoke the

IERC7540RedeemReceiver: : onERC7540RedeemRece ived RiSlalUo AR ARIALS rather than the

_ownerp

Impact:

The is not compatible with the EIP-7540 standard, and one of the callbacks it performs during

redemption requests is done so to the caller rather than the which is invalid behaviour.

Example:

src/abstract/As4626.sol

SOL

function requestRedeem (

uint256 shares,

5 operator,

address owner,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L590
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L625

Example (Cont.):

bytes memory data
) public nonReentrant whenNotPaused returns (uint256 requestId) {
if (operator != msg.sender || (owner != msg.sender && allowance (_ owner,
_operator) < shares))
revert Unauthorized() ;
if (_shares == 0 || balanceOf (owner) < shares)

revert AmountTooLow (_ shares) ;

Erc7540Request storage request = req.byOwner[owner];

if (request.operator != operator) request.operator = operator;

last.sharePrice = sharePrice() ;
if (request.shares > 0) {
if (request.shares > shares)

revert AmountTooLow (_ shares) ;

req.totalRedemption —-= AsMaths.min (
reqg.totalRedemption,
request.shares

) ¢

request.sharePrice =
((last.sharePrice * (shares - request.shares)) + (request.sharePrice
* request.shares)) /
_shares;
} else {

request.sharePrice = last.sharePrice;

Example (Cont.):

_requestId = ++requestId;
request.requestId = requestId;
request.shares = shares;
request.timestamp = block.timestamp;

req.totalRedemption += shares;

if (_data.length != 0) {

if (IERC7540RedeemReceiver (msg.sender) .onERC7540RedeemReceived (operator,
_requestlId, data) != 0x0102fded)

revert Unauthorized() ;

}

emit RedeemRequest (owner, operator, owner, shares);

Recommendation:

We advise either the code to be substantially updated to comply with the EIP-7540 standard, or to

remove support of EIP-7540 and instead implement a custom EIP-7540 adaptation removing

unnecessary traits such as the R EY N LN A S Callback.

We consider either of the two approaches as valid alleviations to this exhibit given that the EIP-7540 is

not yet mature.

Alleviation (59b75fbee1):

The code was updated to accommodate for EIP-7540, however, the standard itself underwent an update

in between the preliminary report and its revision.

As an example, the (R CRET R T o ey function definition denotes a argument on

which the callback should be performed on instead of the [Einey-

EIP-7540 integration should be revised based on the latest implementation of the standard as of 04-15-

2024, and as an extension to the aforementioned recommendation we advise the

concept to be revised as it implements a dangerous polyfill in which the
will expect state mutations as described in the EIP-7540 and this chapter in particular.

Alleviation (efbeab6478):

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L572-L577
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540#request-lifecycle

The contract was refactored to achieve EIP-7540 compliancy solely in relation to redemption requests
due to size limitations the contract must abide by and the updates involved in the EIP-7540 standard

itself.

We observed that EIP-7540 compliancy is still not achieved in two significant areas that pertain to

redemption requests.

The first area of concern is the function and the fact that it does not

align with the relevant EIP-7540 implementation as described here. As such, integrators will be unable

to reliably invoke the LEIFIFREIEEE EVIRI LN 0 02 function to assess the portion of funds that are

claimable for a particular (RS

The other area of concern is the function implementation itself, and the fact that

it overwrites the previous requested rather than incrementing them. Per the standard itself\:

Assumes control of from and submits a Request for asynchronous [aeeeag This
places the Request in Pending state, with a corresponding increase in [SEistehRateistIsItS Mt btstd fOr the

amount [FEREE].

As the present mechanism will overwrite the previous request if done for the same receiver, it will not

behave per the standard and thus break compliancy.

We advise both deviancies to be alleviated so as to ensure the contract is and remains EIP-7540

compliant.

As an additional comment, the [P PIFERRARRII N bRt IR NbaANe SRR fLINCtiON IS Mistyped and should

be corrected.

Alleviation (cf5194da53):

The Astrolab DAO team evaluated our follow-up review of the exhibit and proceeded with addressing the

three concerns raised within it.

Specifically, a polyfill was introduced that complies with the EIP-

7540 function signature, the EEE P RRRA RIS etobRetel ERATobat - XtNR {\/DOgraphic mistake was

corrected, and the [T IR L T opwpwea function was refactored to treat the input as an

increment of the existing redeem request if it exists.

As all EIP-7540 related compatibility concerns have been addressed by the Astrolab DAO team, we

consider this exhibit fully alleviated.

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L771-L777
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540#claimableredeemrequest
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L771-L777
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540#requestredeem
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/cf5194da53ebf026da6c8efa74daada96719cc71/src/abstract/As4626.sol#L771-L777
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/cf5194da53ebf026da6c8efa74daada96719cc71/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540

A62-12M: Inexistent Reservation of Shares
Type Severity Location

Logical Fault @ Mcjor As4626.s0l:L591, L593, L619

Description:

The function will permit a user to request a redemption to be fulfilled at a later
date. This request will reserve a portion of the available funds in the strategy and will cause a liquidation

to occur to satisfy it.

The flaw in the current implementation is that a redemption request does not reserve the underlying EIP-
20 balance, enabling a user to create multiple redemption requests with the same fungible EIP-20

balance across multiple accounts.

Impact:

It is possible to cause the strategy to no longer operate by creating multiple redemption requests that

must be honoured by the system's liquidation mechanisms.

Example:

src/abstract/As4626.sol

SOL

function requestRedeem (

uint256 shares,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L591
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L593
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L619

Example (Cont.):

bytes memory data
) public nonReentrant whenNotPaused returns (uint256 requestId) {
if (operator != msg.sender || (owner != msg.sender && allowance (_ owner,
_operator) < shares))
revert Unauthorized() ;
if (_shares == 0 || balanceOf(owner) < shares)

revert AmountTooLow (_ shares) ;

Erc7540Request storage request = req.byOwner[owner];

if (request.operator != operator) request.operator = operator;

last.sharePrice = sharePrice() ;
if (request.shares > 0) {
if (request.shares > shares)

revert AmountTooLow (_ shares) ;

req.totalRedemption —-= AsMaths.min (
reqg.totalRedemption,
request.shares

) ¢

request.sharePrice =
((last.sharePrice * (shares - request.shares)) + (request.sharePrice
* request.shares)) /
_shares;
} else {

request.sharePrice = last.sharePrice;

Example (Cont.):

_requestId = ++requestId;
request.requestId = requestId;
request.shares = shares;

request.timestamp = block.timestamp;

req.totalRedemption += shares;

if (_data.length != 0) {

1f (IERC7540RedeemReceiver (msg.sender) .onERC7540RedeemReceived (operator,
_requestlId, data) != 0x0102fded)
revert Unauthorized() ;
}

emit RedeemRequest (owner, operator, owner, shares);

Recommendation:

We advise the function to ensure that the being submitted as part of

the request are correctly locked and to prevent their transfer or usage until the request is either cancelled
or fulfilled.

Alleviation (59b75fbee1):

The code was updated to overload the AN ERERLYEEINY function, however, the [kl RS -E {3 5o)

function continues to permit shares meant for a request to be transferred.

Alleviation (efbeab6478):

The function has been overridden as well, ensuring that all EIP-20 transfer related

functions correctly impose the pending redemption request amount limitation.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ERC20.sol#L179-L208
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ERC20.sol#L219-L267
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/ERC20.sol#L219-L267
https://eips.ethereum.org/EIPS/eip-20

As4626Abstract Manual Review Findings

AAT-01M: EIP-7540 Incompatibility

Type Severity Location
Standard Conformity As4626Abstract.sol:L40-L45
Description:

The event declaration within the [N TEE contract does not comply with the

specification of the EIP.

Impact:

A severity of minor has been assigned as the incompatibility will solely affect off-chain consumers of

these events, however, it is imperative that the incompatibility is rectified.

Example:

src/abstract/As4626Abstract.sol

SOL

event RedeemRequest (

address indexed sender,

indexed operator,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-7540#redeemrequest
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L40-L45

Recommendation:

We advise the event arguments as well as names to be updated to comply with the EIP-7540 standard as

otherwise compatibility with it should not be advertised.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The event has been updated to become fully compliant with the latest EIP-7540 standard definition as of

04-15-2024, alleviating this exhibit.

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540

AsArrays Manual Review Findings

AAS-01M: Incorrect EVM Memory Assumptions

Type Severity Location
Logical Fault @ Major AsArrays.sol:L80-L89, L96-L106, L112-L121
Description:

The CEEEPYPYREY] (YEPRRVARRIERR) ond therchy REEESPRRPSERR (fo the RN dota type) orc

invalid implementations as they do not conform to the intricacies of the EVM's memory space.

Specifically, the function incorrectly assumes that an array pointer can be transformed
to a new array by shifting the pointer's value in byte increments per the elements the user wishes to
skip. This is incorrect, as a valid array pointer will contain the array's length in the first 32 byte slot and the

elements after it, meaning that shifting the pointer will result in an array that has a length equal to the

clement,
In turn, this will cause the assignment in to produce an array with length

equal to containing all entries that fit within that length as well as corrupt memory data
due to an "overflow" of the allocated memory as a result of the overwritten array length should it exceed

the initial size.

On the other hand, the function will instantiate a pointer with an array with a
specified [y, however, the will be overwritten by the ensuing assignment. This means that

whatever the expected [EEEgS, the resulting array will use the aforementioned
entry (or the actual size, if is [§J) as the and the local declaration will be immediately

discarded.

As a final note, the function is an ineffective test as it will not mutate the length

of the array nor will it skip any elements in which case the malfunctions we described do not surface.

Impact:

Any operation will either result in corrupted data or transaction failure, either of which

can be considered of significant severity.

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L85-L89
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L112-L121
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L80-L89
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L112-L121

Example:

src/libs/AsArrays.sol

SOL

NE

function ref (uint256[] memory data) internal pure returns (uint ptr) {

assembly {
:= data

Example (Cont.):

function unref (uint256 ptr, uint256 size) internal pure returns (uint2567[]
memory) {

uint256[] memory data =

new uint256[] (size) ;
assembly {

data := ptr

}

return data;

function testRefUnref () internal pure returns (bool) {

uint256[] memory dt = new uint256[] (3);

for (uint i = 0; i < dt.length; i++) {
dt[1i] = 1i;

}
uint256 wptr = ref (dt);

Example (Cont.):

uint256[] memory data;
data = unref (wptr, 3);
return data.length == 3 && data[0] == 0 && datal[l] == 1 && datal2]

256

function slice(uint256[] memory self, uint256 begin, uint256 end) internal pure

returns (uint256[] memory) {
require (begin < end && end <= self.length);

return unref (ref (self) + begin * 0x20, end - begin);

Recommendation:

We advise the overall approach to efficient array slicing to be revised as it is presently incorrect, causes

data corruptions as well as potential unhandled errors.

To note, slices of in-memory arrays can already be acquired using the slice syntax (i.e. (ITEta) for

RERBREE arrays and could be a viable replacement to a custom implementation.

Alleviation (59b75fbee1):

The codebase was refactored with the implementation removed and the

) S VSEVERREIREY implementation revised, however, the B SSEUCEREIRRTY implementation remains

incorrect.

Specifically, it will copy less than the actual elements it is meant to due to calculating the pointer as
add (src, length) JRRCEEINOE 2dd (src, mul (length, 0x20)) RANEKEISaleRIaIERTaE U][als] loop to

terminate early.

In turn, this will lead to the array incorrectly yielding zeroed out entries instead of failing. We advise the

pointer to be updated properly so as to fully alleviate this exhibit.

As a final note, both implementations incorrectly calculate the pointer until which

the iteration should run.

Alleviation (efbeab6478):

The Astrolab DAO team evaluated the follow-up alleviation chapter of this exhibit and opted to omit the

functions from the contract entirely, rendering this exhibit alleviated by omission.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133

AAS-02M: Incorrect Usage of Memory

Type Severity Location
Language Specific @ Major AsArrays.sol:L24, L43, L64
Description:

The referenced statements will write to the memory pointer which is meant to represent the initial

value of dynamic memory arrays, thereby corrupting all future array instantiations.

Impact:

Any invocation of the [NSNT eI [Ty or functions will cause future

array instantiations to be corrupted.

Example:

src/libs/AsArrays.sol

SOL

function max (uint256[] storage self) public view returns (uint256 value) {

assembly {
mstore (0x60, self.slot)
value := sload(keccak256(0x60, 0x20))

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L22-L34
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L41-L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L62-L78
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L24
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L43
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L64

Example (Cont.):

} 1t (i, sload(self.slot)) {
i := add(i, 1)

switch gt (sload (add(keccak256 (0x60, 0x20), i)), value)

case 1 {

value := sload(add(keccak256 (0x60, 0x20), 1i))

Recommendation:

We advise the code to utilize the directly or to properly reserve memory using the free
memory pointer at (g9

Alleviation (59b75fbee1):

The code was updated to load the free memory pointer at , however, the actual free memory pointer

is not updated after its memory has been utilized which is incorrect.

For more details on how to securely utilize the free memory pointer, kindly consult the relevant Solidity

documentation resource.

Alleviation (efbeab6478):

The free memory pointer is updated correctly in all relevant instances, and is updated twice redundantly in

the (EEEEERRE function.

As the original issue has been alleviated properly, we consider this exhibit addressed despite the

inefficiency described.

https://docs.soliditylang.org/en/latest/assembly.html#memory-management
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/libs/AsArrays.sol#L22-L34

AsCast Manual Review Findings

ACT-01M: Potentially Insecure Address Cast

Type Severity Location
Input Sanitization AsCast.sol:L119-L121
Description:

The (IR LT function will cast the input EReEER variable to an without validating

that the variable does not have any corrupt bits.

Impact:

Dirty bits in the variable will not affect the end-result of the casting operation but may affect

other contextual assumptions in the caller of the function.

Example:

src/libs/AsCast.sol

SOL

function toAddress (bytes32 b) internal pure returns (address) {

return address (uintl60 (uint256(b))) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#input-sanitization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol#L119-L121
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol#L119-L121

Recommendation:

We advise the code to cast the representation of the variable to a variable
safely (i.e. via (H IR aaa)) . cnsuring that there are no dirty bits in the representation cast.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The code was updated to invoke the function as advised, ensuring that all

casts are safely performed.

AsManageable Manual Review Findings
AME-01M: Invalid Conditional Evaluation
Type Severity Location

Logical Fault AsManageable.sol:L86-L96, L172

Description:

The EBIEELEL TEV RSl ¥ S AR I LPLERY function will return early if the role being accepted is the
ROSNeRg, however, the [Nt ates entry will never have the [nReRY as a due to

the fact that the [NB T TR T o will configure it solely when the is either the
or the (RS

Example:

src/abstract/AsManageable.sol

SOL

function grantRole (

bytes32 role,

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L168-L177
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L86-L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L172

Example (Cont.):

public
override

onlyRole (getRoleAdmin (role))

require (!hasRole (role, account));

if (role == DEFAULT ADMIN ROLE || role == MANAGER ROLE) {

pendingAcceptance [account] = PendingAcceptance ({

replacing: role == DEFAULT ADMIN ROLE
? msg.sender
address (0),
timestamp: block.timestamp,
role: role
});
} else {

_grantRole (role, account);

Recommendation:

We advise the code to be updated, potentially by adjusting the conditional of the

NS VET N Y SRERE PN XTI fUNCtion t0 also execute the [SstebRstey Xttt Path when the input kY is
the (D

Alleviation (59b75fbee1d8f3dee807c928f18bed41c58b904e1):

The Astrolab DAO team indicated that they will address this point with an acceptable remediation,

however, it remains open in the latest version of the codebase and specifically the

) NTTYTTol A2 T B I IRENLII S50 0Y function that implements the original contract's purpose.

As the exhibit does not pose a security concern, we will consider it acknowledged but advise the Astrolab

DAO team to potentially revisit it.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L309-L319

AME-02M: Detachment of Authorized Role

Type Severity Location

Logical Fault @ Major AsManageable.sol:L152, L158, L160

Description:

The function will permit the caller to accept any role they wish regardless of
what was initially authorized to them via the function as the input

argument is utilized instead of the data entry.

Impact:

It is presently possible to acquire a different role than the one you have been authorized for (i.e. acquire

the yNoREpN ISR \vhile authorized for the [Ny gNOIBA) as well as cause the deletion of the

by accepting such an authorization whilst granting a different role.

Example:

src/abstract/AsManageable.sol

SOL

function acceptRole (bytes32 role) external ({

PendingAcceptance memory acceptance = pendingAcceptance[msg.sender];

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L152-L162
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L152
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L158
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L160

Example (Cont.):
__checkRoleAcceptance (acceptance) ;
if (acceptance.replacing != address (0)) {

_revokeRole (acceptance.role, acceptance.replacing);

}

_grantRole (role, msg.sender) ;

delete pendingAcceptance [msg.sender];

Recommendation:

We advise the code to remove the argument entirely, and to utilize the payload
for all the data it requires.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

Role acceptance is properly validated in the XIS A2 IREY FREVIINIa:L3Y function and specifically the

) NTTY-1-T07e3 A 2 2N MY FWEI 1Y) S LIRY LIS LR Validation mechanism which has replaced the original
implementation.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L309-L319
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L149-L168

AsMaths Manual Review Findings
AMS-01M: Improper Absolute Function Implementation
Type Severity Location

Mathematical Operations : AsMaths.sol:L248

Description:

The function is expected to yield the absolute value of the input number in its
representation, however, in doing so the function will not properly handle the value

R LII i cven though it is representable by the the conversion occurs to.

This is due to the fact that all signed integers have one less value in the positive range as a result of the

bit signifying the polarity of the number.

Impact:

As the code would simply instead of yielding a corrupt value, we consider its severity to be

informational.

Example:

src/libs/AsMaths.sol

SOL

function abs (int256 x) internal pure returns (uint256) {

return uint256(x > 0 ?2 x : —-X);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L247-L249
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L248

Recommendation:
We advise a conditional to be introduced, ensuring that EEES I RERG X ERRTLIIREEPIIEINN (S \iclded if the

input B4 is equal to the [igsRERSZLI MR RS \/alLiE.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The case of (8 being equivalent to is now adequately handled by the

function, ensuring that the value is calculated safely for all possible inputs.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsMaths.sol#L247-L249

AsProxy Manual Review Findings
APY-01M: Reservation of Function Signatures
Type Severity Location

Standard Conformity AsProxy.sol:L57, L65, L73

Description:

Any implementation is meant to relay calls to its logic contract and should not implement any
functions of its own to avoid function signature clashes (i.e. a function signature being present in both the

and its logic implementation).

In such cases, the function signature in the implementation will take precedence preventing the

function from the logic contract from ever being invoked via it.

Impact:

The probability of a function signature collision is low but not unlikely given that only 4 bytes are utilized
of the resulting function's hash. As such, it is advised that these implementations are instead present in

the logic contract to ensure that the proxy is a pass-through contract rather than one with logic within it.

Example:

src/abstract/AsProxy.sol

SOL

function initialized() public view virtual returns (bool) ({

return implementation() != address(0);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L73

Example (Cont.):

function implementation() external view virtual returns (address) {

return implementation();

25

function proxyType () ex virtual returns (uint256) {

return 2;

Recommendation:

We advise the functions to be implemented by the logic implementation instead, ensuring that all function

signatures are properly forwarded to the logic contract.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

APY-02M: Potentially Insecure Utilization of Scratch Space
Type Severity Location

Language Specific AsProxy.sol:L29, L31

Description:

IliE] AsProxy: : delegateWithSignature JiUlsIGi{elsicIatCInI RN NIII[ORG[N Proxy : : delegate

implementation by taking control over the full memory scratch space whose security relies entirely on the

way the function is invoked as well as the primitives that are used around its invocation.

Impact:

A severity of minor has been assigned due to the fact that the top-level call that leads to the

b N3 2 R D L CL RS R L EREY function's execution has been confirmed as being the final

statement in each code block.

In spite of this, we still advise proper memory reservation to occur as it represents a somewhat small gas

increase while significantly bolstering the security of these relayed calls.

Example:

src/abstract/AsProxy.sol

SOL

function delegateWithSignature (

address implementation,

string memory signature
) internal ({

bytes4 selector = bytes4 (keccak256 (bytes(signature)));

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L29
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L31

Example (Cont.):

assembly {

mstore (0x0, selector)

calldatacopy (0x4, 0x4, sub(calldatasize (), 0x4))
let result := delegatecall (
gas (),
_implementation,
0x0,
calldatasize (),
0,
0
)
let size := returndatasize ()
let ptr := mload(0x40)

returndatacopy (ptr, 0, size)

switch result
case 0 {
revert (ptr, size)
}
default {

return (ptr, size)

Recommendation:

We strongly advise against utilizing the scratch space based on the fact that the

) N} 2 R O - R ER SRR BN function is invoked within other functions, the usage of EEICIEY AN

prior to the block which utilizes the scratch space itself, and the fact that the memory

required by the function is dynamic and reliant on the call-data of the top-level call.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html#layout-in-memory

APY-03M: Insecure Forwarded Payload

Type Severity Location

Logical Fault @ Major AsProxy.sol:L31

Description:

The function will forward the payload attached to the transaction's
to the associated with the input function of the function.

Based on the way the L2V ERER ERRN- BTN ERS KR L ERERN function is invoked within the codebase, the

relayed payload will be outright incorrect or contain superfluous data points in the following cases:

Impact:

sl sStrategyV5Chainlink: :updateAsset [l StrategyV5Pyth: :updateAsset [LEURUINETIEI)

misbehaviour as it will relay an improper which we consider a significant misbehaviour.

Example:

src/abstract/AsProxy.sol

SOL

function delegateWithSignature (

address implementation,

string memory signature

) internal ({

bytes4 selector = bytes4 (keccak256 (bytes(signature)));

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L82-L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L86-L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L31

Example (Cont.):

assembly {

mstore (0x0, selector)

calldatacopy (0x4, 0x4, sub(calldatasize (), 0x4))
let result := delegatecall (
gas (),
_implementation,
0x0,
calldatasize (),
0,
0
)
let size := returndatasize ()
let ptr := mload(0x40)

returndatacopy (ptr, 0, size)

switch result
case 0 {
revert (ptr, size)
}
default {

return (ptr, size)

Recommendation:

The flaw arises from the fact that the transaction's is utilized, and the remains the

same regardless of how many [iRaaly functions are invoked as only an external call can mutate the

calldatal

As the function is never used to actually forward a dynamic based payload, we advise a
argument to be introduced to the function that is in turn forwarded, ensuring that the data
the contract receives is accurate and expectable.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

AsSequentialSet Manual Review Findings
ASS-01M: Improper Sequential Set Shift Operation
Type Severity Location

Logical Fault AsSequentialSet.sol:L79-L87

Description:

The operation will break the sequential nature of the set as it will replace the
first element with the last element of the set and then pop the first element from the end of the array,

thereby breaking its order.

Example:

src/libs/AsSequentialSet.sol

SOL

function shift (Set storage g) internal {
if (g.data.length == 0) {
revert EmptySet ()
}
delete g.index[g.data[0]];

g.data[0] = g.data[g.data.length - 1];

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87

Example (Cont.):

g.index[g.data[0]]

g.data.pop () ;

Recommendation:

We advise this trait to be re-evaluated, as the set is no longer sequential via these operations.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The Astrolab DAO team evaluated this exhibit and clarified that the "Sequential" keyword is meant to refer
to memory allocation rather than how the elements are ordered. The team proceeded to rename the
library as to better reflect this fact, addressing any confusion that the exhibit arose from.

ASS-02M: Inexistent Prevention of Duplicate Elements
Type Severity Location

Logical Fault AsSequentialSet.sol:L37, L94, L111

Description:

The is inherently incompatible with duplicate entries due to its index system and would

cause a fatal corruption of the dataset if any such entry is added.

Impact:

The as presently utilized will prevent this misbehaviour from manifesting, however, it is
crucial that the duplicate entry limitation is enforced at the level to avoid this behaviour surfacing

as part of future development efforts.

Example:

src/libs/AsSequentialSet.sol

SOL

function push (Set storage g, bytes32 o) internal {

g.data.push (o) ;

g.index[o] = uint32(g.data.length);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L37
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L94
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L111

Recommendation:
We advise the code to prevent duplicate entries by ensuring that the of an entry being added is
Alleviation (59b75fbee1):

While the EXIRII LI IRIINERENNN aNd LRI T VIR RRER T2 fuNCctions have been updated to prevent

duplicates, the function continues to permit them rendering this exhibit

partially alleviated.

Alleviation (efbeab6478):

A PEEER check was introduced at the top of the function that disallows

duplicate entries correctly, rendering this exhibit fully alleviated.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L145-L149
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L229-L250
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/libs/AsIterableSet.sol#L211-L222

ASS-03M: Invalid Sequential Set Shift Operation

Type Severity Location

Logical Fault @ Mcjor AsSequentialSet.sol:L83-L86

Description:

If the [iSEerag of the set is [, the [Tt TR trag operation will retain a non-zero for

the entry being removed even though it is no longer present in the array.

Impact:

When the last element of the array is shifted, the element will have a non-zero even though it is no
longer present in the set which is invalid and would cause evaluations to yield

after other elements are placed as well as incorrect behaviour if anyone attempts to remove it.

Example:

src/libs/AsSequentialSet.sol

SOL

function shift (Set storage g) internal {
if (g.data.length == 0) {

revert EmptySet ()

}
delete g.index[g.data[0]];

= g.data[g.data.length - 1];

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L193-L195
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L83-L86

Example (Cont.):

g.index[g.data[0]]

g.data.pop () ;

Recommendation:

We advise the code to instead the of the last remaining element and simply it if
the value is [f§, ensuring that the entries are correctly updated.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

Our recommendation was adhered to, deleting the index of the last element (i.e. the only one in the array

BRI and issuing a (389 operation to the array.

ASS-04M: Invalid Sequential Set Unshift Operation

Type Severity Location

Logical Fault @ Major AsSequentialSet.sol:L98-L100

Description:

The BT IR ERRL St function will overwrite the last element of the array if the

is non-zero and will also not update its index, corrupting the sequential set.

Impact:

Whenever an element is unshifted and the array is not empty, the last entry of the set will be removed

from the system while its index will yield a non-zero entry thereby causing f e AE UR-TY RS T
evaluations to yield as well as incorrect behaviour if anyone attempts to remove it.

Example:

src/libs/AsSequentialSet.sol

SOL

function unshift (Set storage g, bytes32 o) internal ({
if (g.data.length == 0) {
g.data.push (0) ;

g.data[g.data.length - 1] = g.data[0];

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L94-L103
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L193-L195
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L98-L100

Example (Cont.):

g.index[g.data[0]] = uint32(g.data.length);
g.data[0] = o;
}

g.index[0o]

Recommendation:

We advise the code to instead to the array and perform the referenced statements

afterwards, ensuring that no data is overwritten from the sequential set and that all indexes are correct.

To note, this would also break the order of the sequential set as specified in a separate exhibit and an

alternative approach should be utilized if the order is expected to remain the same.

Alleviation (59b75fbee1):

While the code was refactored to and perform the relevant index updates, the

assignment of [was relocated within the block of the [Vt ST IR e function which
causes an [T R I Era] operation on an empty structure to not update the of

the element added.

We advise the update to be relocated outside the block as it was in the original
implementation, ensuring that the of the unshifted J element is correctly maintained under all

scenarios.

Alleviation (efbeab6478):

The assignment has been relocated outside the clause per the original implementation,

addressing this exhibit in full.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221

StrategyV5 Manual Review Findings
SV5-01M: Implementation & Documentation Mismatch
Type Severity Location
Logical Fault StrategyV5.s0l:L498

Description:

The inline documentation of the referenced statement denotes that:

only invest 90% of liquidity for buffered flows

However, the full L CAFII VI LIIRRENLEREVIRY amount is utilized for the investment preview.

Impact:

The system is presently inefficient as no liquidation buffer is utilized and the documentation does not

match the implementation of the code.

Example:

src/abstract/StrategyV5.sol

SOL

function previewInvest (

uint256 amount

) public view returns (uint256[8] memory amounts) {
if (_amount == 0)

_amount = available();

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L113-L118
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L498

Example (Cont.):

int256[8] memory excessInput = excesslInputlLiquidity(invested() + amount);

for (uint8 i = 0; i < inputLength; i++) {
if (_amount < 10) break;
if (excessInput[i] < 0) {
uint256 need = inputToAsset (excessInput[i].abs(), 1);
if (need > amount)
need = amount;
amounts[i] = need;

_amount -= need;

Recommendation:

We advise the code to properly utilize only 90% of the amount to ensure
that a buffer is permitted for potential liquidations that may occur.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Astrolab DAO team evaluated this exhibit and identified that it represented a simple discrepancy

between the latest code implementation and the in-line documentation that accompanies it.

Specifically, the "90%" threshold can be imposed via rendering a flat reduction

unnecessary and in reality inefficient in the latest system.

As such, we consider this exhibit as alleviated and have downgraded its severity to reflect a

documentational discrepancy.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L113-L118

SV5-02M: Discrepancy of Liquidation Preview

Type Severity Location
Mathematical Operations StrategyV5.so0l:L471, L474, L476
Description:

The HEEXA a4l S T e At et EX Y function will add the minimum between
totalPendingAssetRequest () + allocated.bp (150) [EIRON allocated QoR{glERIalolNls , however, the

ensuing subtraction will fail if the that results exceeds the value.

Impact:

As the function is solely utilized by off-chain software, the impact of this
flaw would solely translate to off-chain services and whether they handle revert errors of the

StrategyV5: :previewLiquidate JiVglejile]aNeIgiglo]®

Example:

src/abstract/StrategyV5.sol

SOL

function previewLiquidate (
uint256 amount
) public view returns (uint256[8] memory amounts) {

uint256 allocated = invested():;

_amount += AsMaths.min(totalPendingAssetRequest () + allocated.bp (150),
allocated) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L471
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L476

Example (Cont.):

int256[8] memory excessInput = excessInputliquidity(allocated - amount);
for (uint8 i = 0; i < inputLength; i++) {

if (_amount < 10) break;

if (excessInput[i] > 0) {

uint256 need = inputToAsset (excessInput([i].abs (), 1)

if (need > amount)

need = amount;
amounts[i] = assetTolInput (need, 1i);

_amount -= need;

Recommendation:

We advise the (R it L P el s X ELN] \/2/ue to be added to the

directly, and the to be consequently assigned to the minimum between the calculated value and

the value of ensuring that a subtraction overflow cannot occur.

Alleviation (59b75fbee1d8f3dee807c928f18bed41c58b904e1):

Our recommendation has been applied to the letter, incrementing the by the relevant buffer

(updated to 0.5% from 1.5% in the latest implementation) and then calculating the minimum between the

new and the EYRETER Nl value.

SV5-03M: Insecure Casting Operations

Type Severity Location
Mathematical Operations StrategyV5.s0l:L419, L420, L448, L449
Description:

The referenced operations will cast a variable to its signed representation (fEiaaag) Without

proper bound checks.

Impact:

Any cast-based overflow operation will not be properly detected by the Solidity version utilized,

potentially causing misbehaviours in the calculations referenced if the cast values manage to exceed the

maximum of an el

Example:

src/abstract/StrategyV5.sol

SOL

function excessWeight (

uint8 index,

uint256 total

) internal view returns (int256)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L419
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L420
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L448
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L449

Example (Cont.):

0) _total = invested();

int256 (invested(index) .mulDiv (AsMaths.BP BASIS, total)) -

int256 (uint256 (inputWeights|[index])):;

Recommendation:

We advise each cast to be performed safely, ensuring the value being cast is less-than the maximum

supported by the data type (i.c. AR -

Alleviation (59b75fbee1d8f3dee807¢928f18bed41c58b904e1):

The Astrolab DAO team indicated that they plan to enforce safety checks for the relevant casting

operations in a future iteration of the codebase per the linked GitHub discussion.

As such, we consider this exhibit to be safely acknowledged.

StrategyV5Agent Manual Review Findings
SVA-01M: Discrepant Allowance Maintenance
Type Severity Location

Logical Fault StrategyV5Agent.sol:L53, L143-L144

Description:

The R TNy a%T:-b S L RREIXAN VSIS SRR LY XY function will ensure that a new swapper will be properly
authorized to swap the reward tokens of the contract, however, the EI3ERE ey 'a%Y.Yo 1 L RRE-TX o TN PP Lo Loy LY o F-)

function fails to do this thereby causing newly configured reward tokens to lack the necessary approval to

be utilized.

Impact:

Configuration of new reward tokens will cause them to be inoperable by the swapper and would require

multiple actions for the swapper to be properly approved for them.

Example:

src/abstract/StrategyV5Agent.sol

SOL

function setRewardTokens (
address[] calldata rewardTokens
) public onlyManager {

if (rewardTokens.length > 8) revert Unauthorized();

for (uint8 i = 0; i < rewardTokens.length; i++) ({

rewardTokens[i] = rewardTokens[i];

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L45-L60
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L138-L147
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L53
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L143-L144

Example (Cont.):

rewardTokenIndex|[rewardTokens[i]] = i+1;

}

rewardLength = uint8 (rewardTokens.length) ;

Recommendation:

We advise the R Ty a4 Vo1 L RETXA L PR by 33 %] function to properly set allowances, ensuring the

can utilize them as necessary.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The Eiaciatetavss-N- I SR LR USSRl fUNCtioN, representing an internalization of the original
PR ETTN ATAT Ve I LRI LU PR L LN I) [0gic, was updated to properly supply approvals for the newly

configured reward tokens rendering this exhibit alleviated.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L138-L147
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5Agent.sol#L138-L147

SVA-02M: Improper No-Op Logic Statement

Type Severity Location
Language Specific StrategyV5Agent.sol:L49
Description:

The referenced statement will not result in any functional change to the code as it will evaluate a ternary

operator and not utilize the result.

Impact:

The code is meant to treat a n value allowance as the maximum but presently ignores it.

Example:

src/abstract/StrategyV5Agent.so

SOL

function setSwapperAllowance (uint256 amount) public onlyAdmin {

address swapperAddress = address (swapper) ;

_amount != 0 ? amount : MAX UINT256;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L49

Example (Cont.):

for (uint256 i = 0; i < rewardLength; i++) {
if (rewardTokens([i] = addres reak;

IERC20Metadata (rewardTokens [i1]) .approve (swapperAddress, _amount);

(uint256 1 = 0; 1 < inputLength; i++)

if (address (inputs[i]) == address (0))

inputs[i] .approve (swapperAddress, _amount);

}

asset.approve (swapperAddress, amount):;

Recommendation:

We advise the behaviour of the [E e sal4):Xe A FRETNAN VS I T WRR LYY t0 be validated and the ternary

operator to either be removed or incorporated within it.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The code was updated to properly utilize the result of the ternary statement in an assignment to the
variable, addressing this exhibit.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L45-L60

SVA-03M: Inexistent Erasure of Previous Approvals

Type Severity Location

Logical Fault StrategyV5Agent.sol:L111, L126, L143

Description:

The various functions of the contract that permit the inputs, reward tokens, and
underlying asset to be adjusted do not erase the previously present approval to the swapper, permitting

lingering approvals to remain in the code.

Impact:

Approvals that are a result of replaced assets will remain to the even if it is replaced, signifying a

potential flaw in the system that can affect funds.

Example:

src/abstract/StrategyV5Agent.so

SOL

function setInputs (

address[] calldata inputs,

uintl6[] calldata weights

) public onlyAdmin {
if (inputs.length > 8) revert Unauthorized();

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L143

Example (Cont.):

address swapperAddress = address (swapper) ;

for (uint8 i1 = 0; 1 < inputs.length; i++) {
inputs[i] = IERC20Metadata(inputs[i]);
inputDecimals[i] = inputs[i].decimals /() ;
inputWeights[i] = weights[i];
inputs[i] .approve (swapperAddress, MAX UINT256) ;

}

inputLength = uint8(inputs.length);

function setRewardTokens (
address[] calldata rewardTokens
) public onlyManager ({
if (rewardTokens.length > 8) revert Unauthorized();
for (uint8 i = 0; i < rewardTokens.length; i++) {
rewardTokens[i] = rewardTokens[i];
rewardTokenIndex[rewardTokens[i]] = i+1l;
}

rewardLength = uint8 (rewardTokens.length) ;

Recommendation:

We advise the code to properly erase any approval that previously existed, ensuring that no lingering

approvals to potentially unauthorized swappers remain.

To note, the input and reward token configuration functions will also need to iterate up to the end of the
/ array respectively to ensure a shrink of the array will also cause approvals to be

erased.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The StrategyV5Agent:: setInputs and StrategyV5Agent:: setRewardTokens functions, both

representing internalized implementations of their original un-prefixed counterparts, have been

updated to erase any previously existing approval when tokens are updated effectively alleviating this
exhibit in full.

SVA-04M: Inexistent Protection Against Re-Initialization

Type Severity Location

Logical Fault StrategyV5Agent.sol:L31-L39

Description:

The function does not prevent against re-initialization, permitting the asset to be

updated without the proper flow defined in (S T A T

Impact:

A severity of minor has been assigned as the function is privileged, however, its impact is significant as

the asset's immediate adjustment without a proper migration can cause the strategy to misbehave greatly.

Example:

src/abstract/StrategyV5Agent.sol

SOL

function init (StrategyBaseParams calldata params) public onlyAdmin {

setRewardTokens (_params.rewardTokens) ;
asset = IERC20Metadata (params.coreAddresses.asset);
assetDecimals = asset.decimals() ;

welPerAsset = 10**assetDecimals;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L81-L112
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39

Example (Cont.):

updateSwapper (params.coreAddresses.swapper) ;

As4626.1init (params.erc20Metadata, params.coreAddresses, params.fees);

Recommendation:

We advise the function to prevent re-invocation via a dedicated variable, ensuring the contract cannot be

re-initialized.

Alleviation (59b75fbee1):

The Astrolab DAO team specified that they intend to supply an public that will prevent
re-initialization, however, no such change has been incorporated in the codebase yet.

As such, we consider this exhibit open in the codebase's current state.

Alleviation (efbeab6478):

Initialization protection has been introduced to the EEELIFEEERERA function, rendering this exhibit

alleviated as a result.

SVA-05M: Insecure Approval Operations

Type Severity Location
Logical Fault StrategyV5Agent.sol:L53, L57, L111, L129
Description:

The referenced approval operations may fail if the underlying token prevents approval reconfigurations

when a non-zero approval exists.

Impact:

Presently, a reconfiguration of the inputs of the may fail due to one of the tokens being

present in both the old and new inputs and thus causing the approval to fail.

Example:

src/abstract/StrategyV5Agent.sol

SOL

function setInputs (

address[] calldata inputs,

uintl6[] calldata weights

) public onlyAdmin {

if (_inputs.length > 8) revert Unauthorized();

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L53
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L129

Example (Cont.):

address swapperAddress = address (swapper) ;

for (uint8 i = 0; i < inputs.length; i++) {
inputs[i] = IERC20Metadata(inputs[i]);
inputDecimals[i] = inputs[i].decimals /() ;

inputWeights[i] = weights[i];

inputs[i] .approve (swapperAddress, MAX UINT256) ;

}
inputLength = uint8(inputs.length);

Recommendation:

We advise usage of OpenZeppelin's EEsRSaxeldd library and specifically its EESRSNeritFEE feraelsY-N o eFaopias

function, ensuring that approval overwrites are correctly performed.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

All psaiterliPREtsIsase instances have been replaced by OpenZeppelin's FESRS NI EIesaelY:Ve Fachias

function, ensuring that they will be performed properly regardless of the underlying allowance's state

thereby alleviating this exhibit.

StrategyV5Chainlink Manual Review Findings
SVC-01M: Inexistent Prevention of Data Corruption
Type Severity Location

Input Sanitization StrategyV5Chainlink.sol:L55-L59

Description:

The R EXTYepa%-10) CEEUEEV FRFTNA 2L RIINN) function does not ensure that no previous entry exists for

either the or [T, allowing corruption of their respective data entries in the system.

Impact:

A severity of minor has been assigned due to the function's privileged nature.

Example:

src/abstract/StrategyV5Chainlink.sol

SOL

function setPriceFeed(address address, IChainlinkAggregatorV3 feed, uint256

_validity) public onlyAdmin {

feedByAsset[address] _feed;
decimalsByFeed[feed] feedByAsset[address].decimals () ;
validityByFeed[feedByAsset[address]] = validity;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#input-sanitization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59

Example (Cont.):

SOL

Recommendation:

We advise the 2L e pa%10) CERNERV FRFIXAIIRIIPNNN funCction to ensure that the
e I el cntry is zero, and to utilize a different variable to track whether the has

been configured to be validated as such.

Alleviation (59b75fbee1d8f3dee807c928f18bed41c58b904e1):

The Astrolab DAO team evaluated this exhibit and has opted to purposefully not validate whether a pre-

existing feed exists in the relocated [s;EERNERNIZIIER LRI FNCY function as they wish to be able to

set temporary "identity" feeds for bridged assets when proper feeds are not present.

As such, we consider this exhibit alleviated based on the fact that the Astrolab DAO team will

responsibly employ the data feed configurations.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L111-L116

SVC-02M: Inexistent Validation of Prices

Type Severity Location
Logical Fault StrategyV5Chainlink.sol:L178, L199
Description:

In direct contradiction with the [EERAERNIEREERE NFIRINLLY fUNCtion, the referenced Chainlink queries
do not ensure the yielded is positive.

Impact:

The likelihood of a Chainlink oracle misbehaving is considered low, however, validation of the yielded

should always be performed as a fail-safe.

Example:

src/abstract/StrategyV5Chainlink.sol

SOL

function usdToInput (

uint256 amount,

uint8 index
) internal view returns (uint256) {
IChainlinkAggregatorV3 feed = feedByAsset[address (inputs[index])];
(, int256 price, , uint256 updateTime,) = feed.latestRoundData () ;
if (block.timestamp > (updateTime + validityByFeed[feed]))
revert InvalidOrStaleValue (updateTime, price);
return

_amount.mulDiv (

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L22-L31
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L178
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L199

Example (Cont.):

10 ** (uint256 (decimalsByFeed[feed]) + inputDecimals[index] -

uint256 (price)

Recommendation:

We advise such validation to be introduced, preventing invalid prices from being consumed as acceptable

by the system.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The HEEtaepalaCErtkiand implementation has been superseded by the [SIEERNERY S SaeNERel¥a

implementation, and the relevant statement is now located in the [e:EERNERN IR ELFRIR S £ 11

function.

A validity check for the reported price has been introduced in the relocated code, properly alleviating this

exhibit.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L66-L90

As4626 Code Style Findings

A62-01C: Inefficient Lookups

Type Severity Location

Gas Optimization As4626.s0l:L166, L182

Description:

The linked statements perform key-based lookup operations on declarations from storage

multiple times for the same key redundantly.

Example:

src/abstract/As4626.sol

SOL

Erc7540Request storage request = req.byOwner[owner];
uint256 claimable = claimableRedeemRequest (owner) ;

last.sharePrice = sharePrice() ;

uint256 price = (claimable >= shares)

? AsMaths.min (last.sharePrice, request.sharePrice)

last.sharePrice;

if (_amount > shares.mulDiv(price * weiPerAsset, weiPerShare ** 2))

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L166
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L182

Example (Cont.):

revert AmountTooHigh (amount) ;

if (msg.sender != owner)

_spendAllowance (_owner, msg.sender, shares);

if (claimable >= shares) {

req.byOwner[owner].shares -= shares;

req.totalRedemption -= AsMaths.min (shares, req.totalRedemption);

reqg.totalClaimableRedemption —-= AsMaths.min (
_shares,

reg.totalClaimableRedemption

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of
primitive types or holds a pointer to the contained.

Alleviation (59b75fbee1d8f3dee807c928f18bed41c58b904e1):

The optimization has been applied per our recommendation, using the storage pointer that

already exists for the member mutation in the second highlighted line.

A62-02C: Redundant Duplication of Code

Type Severity Location

Code Style P Inf tior As4626.so0l:L146

Description:

The referenced statement will locally perform the statements of the function
redundantly.

Example:

src/abstract/As4626.sol

SOL

shares = deposit (amount, convertToShares (amount,

false) .subBp (exemptionList[receiver] ? 0 : fees.entry), receiver);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L472-L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L146

Recommendation:

We advise the function to be invoked directly, optimizing the legibility of the code.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced statements are no longer part of the p.CIYYIFREE LIS SR function, rendering this

exhibit no longer applicable.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L141-L148

A62-03C: Redundant Parenthesis Statements
Type Severity Location

Code Style As4626.s0l:L170, L801

Description:

The referenced statements are redundantly wrapped in parenthesis' ().
Example:

src/abstract/As4626.sol

SOL

uint256 price = (claimable >= shares)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L170
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L801

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The first of the two referenced instances is no longer applicable whilst the second instance has been

corrected in its updated form rendering this exhibit fully addressed.

A62-04C: Repetitive Value Literal

Type Severity Location

Code Style P Inf tior As4626.s0l:L96, L175, L190, L200

Description:

The linked value literal is repeated across the codebase multiple times.
Example:

src/abstract/As4626.sol

SOL

if (_amount > maxDeposit (address(0)) || _shares > amount.mulDiv(weiPerShare ** 2,

last.sharePrice * weiPerAsset))

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L175
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L190
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L200

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

All referenced instances of have been replaced by a (IR O o0

constant per our recommendation, optimizing the code's legibility.

As4626Abstract Code Style Findings
AAT-01C: Generic Typographic Mistakes

Type Severity Location

Code Style @ nomato: As4626Abstract.sol:L61, L63, L66, L69, L70, L71, L75, L82, L83, L86

Description:

The referenced lines contain typographical mistakes (i.e. variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/abstract/As4626Abstract.sol

SOL

uint256 internal constant MAX UINT256 = type(uint256) .max;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L61
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L63
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L66
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L69
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L70
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L71
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L75
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L82
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L83
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L86

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

All referenced declarations have been appropriately prefixed with an underscore when necessary,

addressing this exhibit in full.

AAT-02C: Improper Declaration of Abstract Function
Type Severity Location

Standard Conformity As4626Abstract.sol:L107

Description:

The VTR oy function is meant to be and implemented by derivative

implementations, however, an empty declaration is present that would permit it to be invoked and yield a

if it is not overridden.

Example:

src/abstract/As4626Abstract.sol

SOL

function invested() public view virtual returns (uint256) {}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L107-L107
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L107

Recommendation:

We advise the function to be declared without a code block () to ensure it is overridden by derivative

implementations.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The referenced function was adjusted in visibility and renamed t0 EEEEFIFNEIRETIRIERA ANl

incorporating our recommendation by no longer specifying an empty code block.

AsAccessControl Code Style Findings
AAC-01C: Inefficient Usage of Utility Functions

Type Severity Location

Gas Optimization AsAccessControl.sol:L126, L137, L149

Description:

In the referenced instances, the lookup will be redundantly performed multiple times due

to using utility functions that also fetch its storage location.

Example:

src/abstract/AsAccessControl.so

SOL

function revokeRole (bytes32 role, address account) internal virtual ({

if (hasRole(role, account)) {
_roles[role] .members.remove (account.toBytes32()) ;

emit RoleRevoked(role, account, msg.sender);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L137
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L149

Example (Cont.):

SOL

Recommendation:

We advise the function invocations to be replaced by their statements directly, caching the result of

IESARRRSARNE (0 a [Ocal ARSIt Variable that can be re-used and thus optimize the gas cost

of the functions.

Alleviation (59b75fbee1d8f3dee807c928f18bed41c58b904e1):

The implementation has been sunset by the standalone

implementation which incorporates a significant portion of the original code.

RN eJelg CleRIngTelCInETpICI[o]gE Il AccessController: : _setRoleAdmin B AccessController:: grantRole
and EXLEEEI LI IRELERREPNIN TN LI properly incorporate the optimization outlined by no longer

utilizing utility functions.

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L220-L224
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L231-L238
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L245-L252

AAC-02C: Redundant Input Argument
Type Severity Location

Gas Optimization AsAccessControl.sol:L106

Description:

THe pXS NI S A S TN ERE I Ytttk function will accept an input argument that will always be
mandated as equal to the (IS

Example:

src/abstract/AsAccessControl.sol

SOL

function renounceRole (bytes32 role, address account) external virtual {

if (account != msg.sender) revert Unauthorized() ;

_revokeRole (role, account);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L106-L109
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L106

Recommendation:

We advise the referenced input argument to be omitted, ensuring that a role renunciation only requires the

role that is being renounced.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The implementation has been sunset by the standalone

implementation which incorporates a significant portion of the original code.

The ported implementation of pX I oS AR 2 I BEFEREIX NI NIN TR iNnCcorporates our recommendation to

omit the input argument and replacing it with direct use of the (R IEIINEs-

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L258-L261

AAC-03C: Redundant Local Variable

Type Severity Location
Gas Optimization AsAccessControl.sol:L126
Description:

The referenced statement will declare a local variable that is solely utilized once

within the code block.

Example:

src/abstract/AsAccessControl.sol

SOL

function setRoleAdmin (bytes32 role, bytes32 adminRole) internal virtual ({

bytes32 previousAdminRole = getRoleAdmin (role) ;
_roles[role].adminRole = adminRole;

emit RoleAdminChanged (role, previousAdminRole, adminRole) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L126

Example (Cont.):

function grantRole(bytes32 role, address account) internal virtual ({

if (!hasRole(role, account)) {
_roles[role] .members.push (account.toBytes32());

emit RoleGranted(role, account, msg.sender) ;

Recommendation:

We advise the LIRS AR TN BB X0 TRy 8 cvaluation to be directly utilized as input to the

IR Ry cvent, and the event's emission to be relocated prior to the data entry's

adjustment.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The implementation has been sunset by the standalone

implementation which incorporates a significant portion of the original code.

The ported implementation of LYCISEEEISSAX I IR FRFEINC IS LRERY Droperly applies our recommended
optimization by emitting the event before mutating the data entry.

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L79-L81
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L220-L224

AsAccounting Code Style Findings

AAG-01C: Repetitive Value Literal

Type Severity Location

Code Style AsAccounting.sol:L126, L127, L128

Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/libs/AsAccounting.sol

SOL

_fees.entry <= 200 &&

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L127
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L128

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

Proper declarations have been introduced for all relevant maximum fee limitations inclusive of

the ones referenced by this exhibit, thereby addressing it in full.

AsArrays Code Style Findings

AAS-01C: Ineffectual Usage of Safe Arithmetics
Type Severity Location

Language Specific P Inf tior AsArrays.sol:L149

Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/libs/AsArrays.sol

SOL

require (begin < end && end <= self.length);

uint256 slicelength = end - begin;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L149

Recommendation:

Given that safe arithmetics are toggled on by default in versions of (JEJE8. we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The referenced statement is no longer present in the codebase in any shape or form rendering this exhibit

inapplicable.

AAS-02C: Inefficient Iteration of Search Loops

Type Severity Location
Gas Optimization AsArrays.sol:L47, L68
Description:

The referenced loops will iterate from @ to identify the maximum and minimum respectively, however,

their entries are already initialized with the first entry of the array.
Example:

src/libs/AsArrays.sol

SOL

function max (uint256[] s ac public view returns (uint256 wvalue) {

assembly {
mstore (0x60, self.slot)
value := sload(keccak256(0x60, 0x20))

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L47
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L68

Example (Cont.):

for {
let 1 := 0

} 1t (i, sload(self.slot)) {
i := add(i, 1)

switch gt (sload (add(keccak256 (0x60, 0x20), 1)),
case 1 {

value)

value := sload(add(keccak256 (0x60, 0x20), 1i))

function min (uint256[] storage self) public view returns (uint256 value) ({

assembly {
mstore (0x60, self.slot)
value := sload(keccak256 (0x60, 0x20))

for {
let 1 := 0

} 1t (i, sload(self.slot)) {
i := add(i, 1)

switch gt (sload(add (keccak256 (0x60, 0x20), i)),
case 0 {

value)

Example (Cont.):

:= sload(add (keccak256 (0x60, 0x20), i))

Recommendation:

We advise the loops to begin at , optimizing each function's gas cost by one iteration.

Alleviation (cf5194da53ebf026da6¢c8efa74daada96719cc71):

Both loops will now begin iteration at the |l index, optimizing their gas cost by one iteration.

AAS-03C: Inefficient Iterator Type
Type Severity Location

Gas Optimization AsArrays.sol:L169, L173, L177

Description:

The referenced loops utilize a variable as an iterator which is inefficient.
Example:

src/libs/AsArrays.sol

SOL

arr = new uint8[] (n); for (uint6d4 i = 0; 1 < n; i++) arr[i]

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L169
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L177

Recommendation:

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped
to [EERRERRg, oPtimizing their gas cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

All referenced iterators have been updated to the data type, optimizing the codebase as

advised.

AAS-04C: Inexistent Error Messages
Type Severity Location

Code Style AsArrays.sol:L131, L146

Description:

The linked checks have no error messages explicitly defined.
Example:

src/libs/AsArrays.sol

SOL

require (begin < end && end <= self.length);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L131
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L146

Recommendation:

We advise each to be set so to increase the legibility of the codebase and aid in validating the

checks' conditions.

Alleviation (59b75fbee1d8f3dee807¢928f18bed41c58b904e1):

In-line documentation was introduced to clarify what the error is. Given that the contracts of the Astrolab
DAO codebase tread closely to the bytecode size limit, we consider this approach as an adequate

alleviation.

AAS-05C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization : AsArrays.sol:L114, L155, L169, L173, L177
Description:

The linked loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post-(HEHES)-
Example:

src/libs/AsArrays.sol

SOL

for (uint i = 0; i < dt.length; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L155
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L169
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L177

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The referenced loop iterator increment statements have been relocated at the end of each respective

loop's body and have been unwrapped in an code block, optimizing their gas cost.

AsManageable Code Style Findings
AME-01C: Generic Typographic Mistakes
Type Severity Location

Code Style : AsManageable.sol:L30, L31

Description:

The referenced lines contain typographical mistakes (i.e. variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/abstract/AsManageable.sol

SOL

uint256 private constant TIMELOCK PERIOD = 2 days;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L30
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L31

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced variables have been renamed and their visibility specifier has been adjusted to (SESERg.

effectively addressing this exhibit as the names are now correctly not prefixed with an underscore.

AME-02C: Inexistent Error Message
Type Severity Location

Code Style AsManageable.sol:L84

Description:

The linked check has no error message explicitly defined.
Example:

src/abstract/AsManageable.sol

SOL

require (!hasRole (role, account)):;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L84

Recommendation:

We advise one to be set so to increase the legibility of the codebase and aid in validating the

check's condition.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The check remains without an explicit error message or in-line documentation justifying it in its

relocated pAILEE] AR AR ERE L4238 (Ocation, rendering the exhibit acknowledged.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L269-L286

AME-03C: Redundant Parenthesis Statements

Type Severity Location

Code Style AsManageable.sol:L140, L173, L175

Description:

The referenced statements are redundantly wrapped in parenthesis' ().
Example:

src/abstract/AsManageable.sol

SOL

if ((role == DEFAULT ADMIN ROLE) && account == msg.sender)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L140
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L175

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The first of the three referenced redundant parenthesis statements is no longer present in the codebase

whilst the latter two could be justified as a legibility increase, rendering this exhibit ultimately alleviated.

AsMaths Code Style Findings
AMS-01C: Generic Typographic Mistakes
Type Severity Location

Code Style : AsMaths.sol:L22, L23, L24

Description:

The referenced lines contain typographical mistakes (i.e. variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/libs/AsMaths.sol

SOL

uint256 internal constant BP_BASIS = 10 000;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L22
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L23
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L24

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced variables remain without an underscore prefix despite their visibility

specification, rendering this exhibit acknowledged.

AMS-02C: Ineffectual Usage of Safe Arithmetics

Type Severity Location
Language Specific : AsMaths.sol:L149
Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/libs/AsMaths.sol

SOL

return a > b ? a - b : b - a;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L149

Recommendation:

Given that safe arithmetics are toggled on by default in versions of (JEJE8. we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

The referenced subtractions have been wrapped in an code block, optimizing their gas cost.

AMS-03C: Inexistent Error Messages
Type Severity Location

Code Style AsMaths.sol:L514, L862

Description:

The linked checks have no error messages explicitly defined.
Example:

src/libs/AsMaths.sol

SOL

require (denominator > prodl) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L514
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L862

Recommendation:

We advise each to be set so to increase the legibility of the codebase and aid in validating the

checks' conditions.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

While the former of the two checks is accompanied by descriptive in-line documentation, the

latter is not thus rendering this exhibit acknowledged.

AMS-04C: Redundant Parenthesis Statements

Type Severity Location
Code Style . AsMaths.sol:L129, L160, L257, L266, L270, L274, L278, L282
Description:

The referenced statements are redundantly wrapped in parenthesis' ().
Example:

src/libs/AsMaths.sol

SOL

return (diff(a, b) <= wval);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L129
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L160
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L257
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L266
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L270
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L274
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L278
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L282

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation (cf5194da53ebf026da6¢c8efa74daada96719cc71):

The redundant parenthesis in the referenced statements have been safely omitted.

AsProxy Code Style Findings

APY-01C: Inefficient Generation of Selector

Type Severity Location
Gas Optimization AsProxy.sol:L26
Description:

The B2V ERIN- PR EERV ERSEER. BRI function will calculate the function selector locally from an input

which is significantly inefficient.
Example:

src/abstract/AsProxy.sol

SOL

function delegateWithSignature (
address implementation,
string memory _signature

) internal ({

bytes4 selector = bytesd (keccak256 (bytes(signature)));

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L26

Recommendation:

Given that the function signatures invoked are known at compile-time, we advise declarations

for them to be utilized and specifically the syntax.

IliE] AsProxy: : delegateWithSignature QVgIG{{eIaNERIVI] CIeRWIIgRIslY StrategyV5Agent: :init
StrategyV5Agent: :updateAsset BE[l St rategyV5Abstract: : set Inputs RISAEIIISE IRVl aRer=1a!
become part of an (i.c. RTINS and accessed as advised (i.e.

IStrategyV5Agent.init.selector |B

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L81-L112

AsRescuable Code Style Findings
ARE-01C: Improper Declarations of Abstract Functions
Type Severity Location

Standard Conformity P Inf tior AsRescuable.sol:L65, L98

Description:

The (NSNS IR T L IO TSN and PSS TSR I functions are meant to be and

implemented by derivative implementations, however, an empty declaration is present in both that would

permit each to be invoked.

Example:

src/abstract/AsRescuable.sol

SOL

function requestRescue (addre _token) external virtual {}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L65-L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L98-L98
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L98

Recommendation:

We advise the functions to be declared without a code block () to ensure they are overridden by

derivative implementations.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

Both functions are now fully implemented by the implementation directly, rendering this

exhibit no longer applicable.

ARE-02C: Inefficient Erasure of Request

Type Severity Location

Gas Optimization AsRescuable.sol:L83-L84, L92-L93

Description:

The (VNN TERRPINGSN {nction will erase the entry after the token has been

transferred but will mark its as [§J before to prevent re-entrancies.

Example:

src/abstract/AsRescuable.sol

SOL

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L78-L95
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L83-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L92-L93

Example (Cont.):

function rescue (address token) internal {

RescueRequest storage req = rescueRequests[token];

require (_isRescueUnlocked(req)) ;

rescueRequests|[token].timestamp = 0;

if (_token == addre
payable (reqg.receiver) .transfer (address (this) .balance) ;
} else {
IERC20Metadata (_token) .safeTransfer (req.receiver,
IERC20Metadata (_token) .balanceOf (address (this))) ;
}

delete rescueRequests[token];

Recommendation:

As the entry is not utilized beyond the [N T IR i ¥ validation, we

advise the entry to be deleted immediately after validation, optimizing the code's gas cost.

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

The inefficiency has been addressed by issuing the operation in place of the erasure

statement, optimizing the code's gas cost.

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L47-L49

ARE-03C: Inefficient Lookups

Type Severity Location

Gas Optimization : AsRescuable.sol:L79, L84

Description:

The linked statements perform key-based lookup operations on declarations from storage

multiple times for the same key redundantly.

Example:

src/abstract/AsRescuable.sol

SOL

RescueRequest storage req = rescueRequests[token];

require (_isRescueUnlocked(req)) ;

rescueRequests|[token].timestamp = 0;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L79
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L84

Recommendation:

As the lookups internally perform an expensive operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the in case of
primitive types or holds a pointer to the contained.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The second highlighted instance properly utilizes the existing storage pointer, optimizing the code as

advised.

ARE-04C: Inexistent Error Messages
Type Severity Location

Code Style AsRescuable.sol:L57, L81

Description:

The linked checks have no error messages explicitly defined.
Example:

src/abstract/AsRescuable.sol

SOL

require (! isRescueUnlocked(req));

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L81

Recommendation:

We advise each to be set so to increase the legibility of the codebase and aid in validating the

checks' conditions.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

While the latter of the two checks is accompanied by descriptive in-line documentation, the

former is not thus rendering this exhibit acknowledged.

AsRescuableAbstract Code Style Findings
ARA-01C: Optimization of Data Structure

Type Severity Location

Gas Optimization AsRescuableAbstract.sol:L15

Description:

The data structure will occupy two storage slots redundantly as the value will
fit reasonably within g bits as a Unix timestamp.

Example:

src/abstract/AsRescuableAbstract.so

SOL

struct RescueRequest {
uint256 timestamp;
SS receiver;

}

mapping (address => RescueRequest) internal rescueRequests;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuableAbstract.sol#L15

Recommendation:

We advise the data type of the to be updated, ensuring that each entry

occupies a single storage slot.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The data structure, now relocated to the implementation, has not applied
the related optimization rendering this exhibit acknowledged.

AsSequentialSet Code Style Findings

ASS-01C: Ineffectual Usage of Safe Arithmetics
Type Severity Location

Language Specific @ nformationa AsSequentialSet.sol:L114, L145

Description:

The linked mathematical operations are guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/libs/AsSequentialSet.sol

SOL

require(i > 0, "Element not found");

removeAt (q, i - 1);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L145

Recommendation:

Given that safe arithmetics are toggled on by default in versions of (JEJE8. we advise the linked
statements to be wrapped in code blocks thereby optimizing their execution cost.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The referenced arithmetic operations in their relocated location are still performed using

checked arithmetic, rendering this exhibit acknowledged.

ASS-02C: Inefficient Loop Limit Evaluations
Type Severity Location
Gas Optimization AsSequentialSet.sol:L114, L250

Description:

The linked loops evaluate their limit inefficiently on each iteration.
Example:

src/libs/AsSequentialSet.sol

g.data.length; 3 > i; j-—-) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L250

Recommendation:

We advise the statements within the loop limits to be relocated outside to a local variable declaration
that is consequently utilized for the evaluations to significantly reduce the codebase's gas cost. We
should note the same optimization is applicable for storage reads present in those limits as they are newly

read on each iteration (i.e. members of arrays in storage).

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The former of the two loops is no longer present in the codebase whilst the latter remains unoptimized,

rendering this exhibit acknowledged.

ASS-03C: Inexistent Error Message
Type Severity Location

Code Style AsSequentialSet.sol:L173

Description:

The linked check has no error message explicitly defined.
Example:

src/libs/AsSequentialSet.sol

SOL

require (i < g.data.length);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L173

Recommendation:

We advise one to be set so to increase the legibility of the codebase and aid in validating the
check's condition.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The referenced error remains without an explicit error message or in-line documentation

justifying it, rendering this exhibit acknowledged.

ASS-04C: Loop Iterator Optimization

Type Severity Location
Gas Optimization : AsSequentialSet.sol:L250
Description:

The linked loop increments [decrements the iterator "safely" due to Solidity's built-in safe

arithmetics (post-(HEHES)-
Example:

src/libs/AsSequentialSet.so

SOL

for (uint256 i = 0; 1 < g.data.length; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L250

Recommendation:

We advise the increment / decrement operation to be performed in an code block as the last

statement within the loop to optimize its execution cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The referenced loop iterator's increment statement has been relocated at the end of the loop's body

and has been unwrapped in an code block, optimizing its gas cost.

ASS-05C: Redundant Deletion Operation

Type Severity Location
Gas Optimization AsSequentialSet.sol:L130
Description:

The referenced operation is redundant as the data entry is overwritten in the ensuing statement.
Example:

src/libs/AsSequentialSet.sol

SOL

function removeAt (Set storage g, uint256 i) internal {

require (i < g.data.length, "Index out of bounds");
if (i < g.data.length - 1) {
delete g.datal[il];
g.data[i] = g.data[g.data.length - 1];
}
g.data.pop () ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L130

Recommendation:

We advise the operation to be omitted, optimizing the code's gas cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The redundant operation has been safely omitted from the codebase, optimizing the function's

gas cost.

ChainlinkUtils Code Style Findings

CUS-01C: Ineffectual Usage of Safe Arithmetics

Type Severity Location
Language Specific @ nformationa ChainlinkUtils.sol:L29, L30
Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/libs/ChainlinkUtils.sol

SOL

return targetDecimals >= feedDecimals ?

uint256 (basePrice) * 10 ** uint32(targetDecimals - feedDecimals)

uint256 (basePrice) / 10 ** uint32 (feedDecimals - _targetDecimals) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L29
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L30

Recommendation:

Given that safe arithmetics are toggled on by default in versions of (JEJE8. we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation (59b75fbee1):

The relevant statement has been significantly refactored and now lives under the

ChainlinkProvider:: toUsdBp WIEIeIelte RNl code block.

We do not consider the present code block introduced to be safe, as it relies on an
flag instead of the actual relation between the variables subtracted thus rendering this exhibit not

validated to highlight the fact of this insecurity.

Alleviation (efbeab6478):

The Astrolab DAO team opted to revert the code block's introduction, ensuring that the

statements are performed safely yet inefficiently per their original implementation.

As such, we consider this exhibit acknowledged as the Astrolab DAO team does not intend to apply the

optimization properly.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L66-L90

CUS-02C: Repetitive Value Literal

Type Severity Location

Code Style ChainlinkUtils.sol:L49, L50

Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/libs/ChainlinkUtils.sol

SOL

return getPriceUsd(feeds[0], wvalidities[0], 18)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L49
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L50

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced value literal now lives under the implementation and specifically the
PEDIXARWNRY constant variable, addressing this exhibit.

PythUtils Code Style Findings
PUS-01C: Ineffectual Usage of Safe Arithmetics
Type Severity Location
Language Specific @ nformationa PythUtils.sol:L33, L34

Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.
Example:

src/libs/PythUtils.sol

SOL

return targetDecimals >= feedDecimals ?

basePrice * 10 ** uint32(targetDecimals - feedDecimals)

basePrice / 10 ** uint32 (feedDecimals - _targetDecimals) ;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L33
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L34

Recommendation:
Given that safe arithmetics are toggled on by default in versions of (JEJE8. we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation (59b75fbee1):

The relevant statement has been significantly refactored and now lives under the

e Tt T g, wrapped in an code block.

We do not consider the present code block introduced to be safe, as it relies on an
flag instead of the actual relation between the variables subtracted thus rendering this exhibit not

validated to highlight the fact of this insecurity.

Alleviation (efbeab6478):

The Astrolab DAO team opted to revert the code block's introduction, ensuring that the

statements are performed safely yet inefficiently per their original implementation.

As such, we consider this exhibit acknowledged as the Astrolab DAO team does not intend to apply the

optimization properly.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PythProvider.sol#L66-L95

PUS-02C: Repetitive Value Literal

Type Severity Location

Code Style PythUtils.sol:L70, L71

Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/libs/PythUtils.sol

SOL

return getPriceUsd(pyth, feeds[0], wvalidities[0], 18)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L70
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L71

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced value literal now lives under the implementation and specifically the
PEDIXARWNRY constant variable, addressing this exhibit.

StrategyV5 Code Style Findings
SV5-01C: Generic Typographic Mistake
Type Severity Location

Code Style @ nformationa StrategyV5.sol:L467, L474

Description:

The referenced line contains a typographical mistake (i.e. variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

Example:

src/abstract/StrategyV5.sol

SOL

* @param _amount Amount of asset to liquidate with (0 == totalPendingAssetRequest ()

+ allocated.bp (100))

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L467
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L474

Recommendation:

We advise this to be done so to enhance the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The documentation was updated to reflect the number that used to be utilized in the instance of the
codebase during the preliminary report, however, the latest instance utilizes the value as an

overallocation.

As such, we advise the documentation to be updated so as to reflect this adjustment.

SV5-02C: Improper Declarations of Abstract Functions

Type Severity Location
Standard Conformity StrategyV5.s0l:L109-1L112, L160-L162, L238-L241, L309, L316
Description:

The referenced functions are meant to be and implemented by derivative implementations,

however, an empty declaration is present in both that would permit each to be invoked.

Example:

src/abstract/StrategyV5.sol

SOL

function liquidate (

uint256[8] calldata amounts,

bytes[] memory params

) internal wvirtual returns (uint256 assetsRecovered) {}

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L109-L112
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L160-L162
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L309
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L316-L319

Recommendation:

We advise the functions to be declared without a code block () to ensure they are overridden by

derivative implementations.

Alleviation (59b75fbee1):

While some functions have been properly implemented thus rendering the empty code block observation
no longer applicable, functions such as remain with an empty code block rendering
this exhibit partially alleviated.

Alleviation (efbeab6478):

All functions have been properly updated to no longer implement a code block where applicable,

rendering this exhibit fully addressed.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L336-L339

SV5-03C: Ineffectual Usage of Safe Arithmetics

Type Severity Location

Language Specific @ nformationa StrategyV5.s0l:L484, L507

Description:

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either checks or constructs.

Example:

src/abstract/StrategyV5.sol

SOL

if (need > amount)

need = amount;

amounts[i] = assetTolnput (need, 1i);

amount -= need;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L484
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L507

Recommendation:

Given that safe arithmetics are toggled on by default in versions of (IR, we advise the linked
statement to be wrapped in an code block thereby optimizing its execution cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

An code block has been safely introduced in both referenced instances, optimizing the code's

gas cost.

SV5-04C: Inefficient Iterator Type
Type Severity Location

Gas Optimization : StrategyV5.s0l:L186, L381, L432, L461, L477, L500

Description:

The referenced loops utilize a variable as an iterator which is inefficient.

Example:

src/abstract/StrategyV5.sol

SOL

for (uint8 i = 0; i < rewardLength; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L186
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L381
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L432
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L461
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L477
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L500

Recommendation:

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped
to [EERRERRg, oPtimizing their gas cost.

Alleviation (59b75fbee1):

Most of the instances have been properly upcast to optimize them, however, the

and functions continue to use suboptimal operators rendering this exhibit
partially alleviated.

Alleviation (efbeab6478):

The iterators in the (e d e R e and BT TR E TSI functions have been

updated to their upcasted format, applying the described optimization in full.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L109-L112
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/StrategyV5.sol#L109-L112

SV5-05C: Loop Iterator Optimizations
Type Severity Location

Gas Optimization : StrategyV5.s0l:L186, L381, L432, L461, L477, L500

Description:

The linked loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post-(HEHES)-
Example:

src/abstract/StrategyV5.sol

SOL

for (uint8 i = 0; i < rewardLength; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L186
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L381
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L432
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L461
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L477
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L500

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation (59b75fbee1d8f3dee807¢c928f18be41c58b904e1):

The referenced loop iterator increment statements have been relocated at the end of each respective

loop's body and have been unwrapped in an code block, optimizing their gas cost.

SV5-06C: Redundant Application of Access Control

Type Severity Location

Gas Optimization StrategyV5.s0l:L298

Description:

The Rt ra iR et function redundantly applies the EXSIEE FEVIREREI MR NI Mmodifier when
its inner calls will perform the same validation (EEERENaL R LILE] —> ISR IR LRIl T] >
StrategyV5: :harvest gl StrategyV5:: harvest g StrategyV5:: swapRewards).

Example:

src/abstract/StrategyV5.sol

SOL

function compound (

uint256[8] calldata amounts,

bytes[] memory params

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L293-L303
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L49-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L293-L303
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L269-L284
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L217-L229
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L206-L210
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L183-L199
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L298

Example (Cont.):

external
onlyKeeper

returns (uint256 iouReceived, uint256 harvestedRewards)

(iouReceived, harvestedRewards) = compound(amounts, params);

emit Compound (iouReceived, block.timestamp) ;

Recommendation:

We advise access control to be solely applied to the innermost functions, ensuring that restrictions are

optimally applied.

Alleviation (59b75fbee1d8f3dee807¢928f18bed41c58b904e1):

The access control inefficiency remains in the codebase rendering this exhibit acknowledged.

SV5-07C: Redundant Parenthesis Statement

Type Severity Location

Code Style StrategyV5.sol:L147

Description:

The referenced statement is redundantly wrapped in parenthesis ().

Example:

src/abstract/StrategyV5.sol

SOL

if ((liquidityAvailable < minLiquidity) && ! panic)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L147

Recommendation:

We advise them to be safely omitted, increasing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The redundant parenthesis in the referenced statement have been safely omitted.

StrategyV5Abstract Code Style Findings
SVT-01C: Generic Typographic Mistakes
Type Severity Location

Code Style P Inf tior StrategyV5Abstract.sol:L38, L41, L44, L45, L46, L52

Description:

The referenced lines contain typographical mistakes (i.e. variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

Example:

src/abstract/StrategyV5Abstract.sol

SOL

address internal stratProxy;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L38
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L41
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L44
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L45
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L46
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L52

Recommendation:

We advise them to be corrected enhancing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The referenced variable as well as its associated concept have been removed from the codebase

rendering this exhibit no longer applicable.

StrategyV5Agent Code Style Findings
SVA-01C: Inefficient Iterator Type
Type Severity Location

Gas Optimization : StrategyV5Agent.sol:L125, L142

Description:

The referenced loops utilize a variable as an iterator which is inefficient.

Example:

src/abstract/StrategyV5Agent.sol

SOL

for (uint8 i = 0; i < rewardTokens.length; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L125
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L142

Recommendation:

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped
to (PEREERlg. oPtimizing their gas cost.

Alleviation (59b75fbee1):

While the referenced iterator types have been optimized, the i teyalier:te N PRItk §a} JP Rl Retokels

function continues to utilize a iterator type which is inefficient.

Alleviation (efbeab6478):

The iterator in the (Rt I L e rare e function has been updated accordingly,

rendering this exhibit fully addressed.

SVA-02C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization : StrategyV5Agent.sol:L51, L55, L125, L142
Description:

The linked loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post-(HEHES)-
Example:

src/abstract/StrategyV5Agent.sol

SOL

for (uint256 i = 0; i < rewardLength; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L51
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L55
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L125
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L142

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The referenced loop iterator increment statements have been relocated at the end of each respective

loop's body and have been unwrapped in an code block, optimizing their gas cost.

StrategyV5Chainlink Code Style Findings
SVC-01C: Generic Typographic Mistake

Type Severity Location

Code Style : StrategyV5Chainlink.sol:L24

Description:

The referenced line contains a typographical mistake (i.e. variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

Example:

src/abstract/StrategyV5Chainlink.sol

SOL

mapping (IChainlinkAggregatorV3 => uint8) internal decimalsByFeed;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L24

Recommendation:

We advise this to be done so to enhance the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The relevant declaration, now located under [EFReEEITuetleg has been properly prefixed with an

underscore rendering this exhibit addressed.

SVC-02C: Loop Iterator Optimization

Type Severity Location
Gas Optimization : StrategyV5Chainlink.sol:L69
Description:

The linked loop increments [decrements the iterator "safely" due to Solidity's built-in safe

arithmetics (post-(HEHES)-
Example:

src/abstract/StrategyV5Chainlink.sol

SOL

for (uint256 i = 0; 1 < chainlinkParams.inputFeeds.length; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L69

Recommendation:

We advise the increment / decrement operation to be performed in an code block as the last

statement within the loop to optimize its execution cost.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The relevant loop has been relocated under the function and its iterator has

been optimized rendering this exhibit addressed.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PriceProvider.sol#L166-L180

SVC-03C: Repetitive Value Literal

Type Severity Location

Code Style P Inf tior StrategyV5Chainlink.sol:L91, L93

Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/abstract/StrategyV5Chainlink.sol

SOL

uint256 retiredPrice = ChainlinkUtils.getPriceUsd (retiredFeed,

validityByFeed[retiredFeed], 18);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L91
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L93

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The relevant literal has been declared as a labelled under the

implementation, addressing this exhibit.

StrategyV5Pyth Code Style Findings
SVP-01C: Generic Typographic Mistake

Type Severity Location

Code Style : StrategyV5Pyth.sol:L26

Description:

The referenced line contains a typographical mistake (i.e. variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

Example:

src/abstract/StrategyV5Pyth.sol

SOL

IPythAggregator internal pyth;

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L26

Recommendation:

We advise this to be done so to enhance the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The relevant declaration, now located under jianLaskatetsd has been properly prefixed with an

underscore rendering this exhibit addressed.

SVP-02C: Loop Iterator Optimizations

Type Severity Location
Gas Optimization : StrategyV5Pyth.sol:L73, L126
Description:

The linked loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post-(HEHES)-
Example:

src/abstract/StrategyV5Pyth.sol

SOL

for (uint256 i = 0; i < pythParams.inputFeeds.length; i++) {

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L73
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L126

Recommendation:

We advise the increment / decrement operations to be performed in an code block as the last

statement within each loop to optimize their execution cost.

Alleviation (59b75fbee1d8f3dee807¢928f18be41c58b904e1):

The former loop has been relocated under the function and its iterator has

been optimized whilst the latter loop is no longer present in the codebase.

These actions cumulatively render this exhibit addressed.

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PriceProvider.sol#L166-L180

SVP-03C: Repetitive Value Literal

Type Severity Location
Code Style StrategyV5Pyth.sol:L99, L107

Description:

The linked value literal is repeated across the codebase multiple times.

Example:

src/abstract/StrategyV5Pyth.sol

SOL

18);

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L107

Recommendation:

We advise it to be set to a variable instead optimizing the legibility of the codebase.

Alleviation (59b75fbee1d8f3dee807¢c928f18bed41c58b904e1):

The relevant literal has been declared as a labelled under the

implementation, addressing this exhibit.

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit

methodology we will publish soon.
Input Sanitization

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in

place to sanitize the values passed in to a particular function.

Indeterminate Code

These types of issues arise when a linked code segment may not behave as expected, either due to
mistyped code, convoluted if blocks, overlapping functions / variable names and other ambiguous

statements.
Language Specific

Language specific issues arise from certain peculiarities that the Circom language boasts that discerns it

from other conventional programming languages.

Curve Specific

Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports BSL12-381
(which has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field). However, since there are no
constants denoting either the prime or the prime size in bits available in the Circom language, some
Circomlib templates like (which returns the sign of the input signal), and (used by the
strict versions of and EEREEERE), hardcode either the BN128 prime size or some other constant
related to BN128. Using these circuits with a custom prime may thus lead to unexpected results and

should be avoided.

Code Style

In these types of findings, we identify whether a project conforms to a particular naming convention and
whether that convention is consistent within the codebase and legible. In case of inconsistencies, we
point them out under this category. Additionally, variable shadowing falls under this category as well which

is identified when a local-level variable contains the same name as a toplevel variable in the circuit.
Mathematical Operations

This category is used when a mathematical issue is identified. This implies an issue with the

implementation of a calculation compared to the specifications.

Logical Fault

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar

extraordinary scenarios.

Privacy Concern

This category is used when information that is meant to be kept private is made public in some way.
Proof Concern

Under-constrained signals are one of the most common issues in zero-knowledge circuits. Issues with

proof generation fall under this category.

Severity Definition

In the ever-evolving world of blockchain technology, vulnerabilities continue to take on new forms and
arise as more innovative projects manifest, new blockchain-level features are introduced, and novel layer-
2 solutions are launched. When performing security reviews, we are tasked with classifying the various
types of vulnerabilities we identify into subcategories to better aid our readers in understanding their

impact.

Within this page, we will clarify what each severity level stands for and our approach in categorizing the
findings we pinpoint in our audits. To note, all severity assessments are performed as if the contract's

logic cannot be upgraded regardless of the underlying implementation.

Severity Levels
There are five distinct severity levels within our reports; (iinay Buaanriont) Gy by and

EEEEE3. A TL.DR overview table can be found below as well as a dedicated chapter to each severity level:

Impact (None) Impact (Low) I(';\n/lgzlg ate) Impact (High)
Likelihood (None) @ nformational @ nformational @ nformational @ nformational
Likelihood (Low) @ Informational @® Vedium
Likelihood (Moderate) @ Infermational @ Medium @ Major
Likelihood (High) @ 'nformational @ Medium @ Moajor @ Major

Unknown Severity

The severity level is reserved for misbehaviors we observe in the codebase that cannot be
quantified using the above metrics. Examples of such vulnerabilities include potentially desirable system
behavior that is undocumented, reliance on external dependencies that are out-of-scope but could result
in some form of vulnerability arising, use of external out-of-scope contracts that appears incorrect but

cannot be pinpointed, and other such vulnerabilities.

In general, severity level vulnerabilities require follow-up information by the project being

audited and are either adjusted in severity (if valid), or marked as nullified (if invalid).

Additionally, the severity level is sometimes assigned to centralization issues that cannot be

assessed in likelihood due to their exploitation being tied to the honesty of the project's team.

Informational Severity

The severity level is dedicated to findings that do not affect the code functionally and
tend to be stylistic or optimizational in nature. Certain edge cases are also set under [RTuEIEIES
vulnerabilities, such as overflow operations that will not manifest in the lifetime of the contract but should

be guarded against as a best practice, to give an example.

Minor Severity

The severity level is meant for vulnerabilities that require functional changes in the code but tend
to either have little impact or be unlikely to be recreated in a production environment. These findings can

be acknowledged except for findings with a moderate impact but low likelihood which must be alleviated.

Medium Severity

The severity level is assigned to vulnerabilities that must be alleviated and have an observable
impact on the overall project. These findings can only be acknowdged if the project deems them desirable
behavior and we disagree with their point-of-view, instead urging them to reconsider their stance while
marking the exhibit as acknowledged given that the project has ultimate say as to what vulnerabilities they

end up patching in their system.

Major Severity

The severity level is the maximum that can be specified for a finding and indicates a significant

flaw in the code that must be alleviated.

Likelihood & Impact Assessment

As the preface chapter specifies, the blockchain space is constantly reinventing itself meaning that new

vulnerabilities take place and our understanding of what security means differs year-to-year.

In order to reliably assess the likelihood and impact of a particular vulnerability, we instead apply an
abstract measurement of a vulnerability's impact, duration the impact is applied for, and probability that

the vulnerability would be exploited in a production environment.

Our proposed definitions are inspired by multiple sources in the security community and are as follows:

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)
and is in effect for all past, current, and future audit reports that are produced and hosted under

Omniscia:

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and
highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the

codebase that were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes
them extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may

include unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed.
Users relying on this security review should not consider this as having any merit for financial advice or

technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees,
nor assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or

any system [economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any

objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds

without sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy
or solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the

high level of variance associated with utilizing new and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the

technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of
this security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards

to the information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or

investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this

engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the
necessary checks to ensure that the contracts are functioning as intended, and more specifically to
ensure that the functions contained within the contracts in scope have the desired intended effects,

functionalities and outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other
materials, products or results of this security review engagement is provided "as is" and "as available"

and with all faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of
content, suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this

engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,

engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax,

legal, regulatory, or any other type of advice.

