
June 13, 2024

Astrolab DAO

Base Strategy Contracts

astrolab-dao-base-strategy-contracts

mailto:info@omniscia.io
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f

Online report: astrolab-dao-base-strategy-contracts

https://omniscia.io/
https://twitter.com/home
mailto:info@omniscia.io
https://omniscia.io/
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f

Commit Hash Date Audit Report Hash

5427ca2aaa March 2nd 2024 190edc3e59

59b75fbee1 April 17th 2024 24abe7bc2d

efbeab6478 May 14th 2024 a4b534feab

cf5194da53 June 5th 2024 86d778b017

cf5194da53 June 13th 2024 dfce318558

cf5194da53 June 13th 2024 090dbf4cca

Base Strategy Contracts Security Audit
Audit Report Revisions

We were tasked with performing an audit of the Astrolab DAO codebase and in particular their Base

Strategy Contracts module.

The project implements a base set of contracts meant to act as the backbone for EIP-4626 vaults that

interact with multiple DeFi protocols via a custom proxy model.

Over the course of the audit, we identified vulnerabilities across multiple modules of the system including

incorrect assembly blocks, incorrect downward price action handling, proxy-forwarded data corruption,

and more.

The system implements a custom proxy model whereby the Strategy contract and the logic contract are

separate, however, this is done so by retaining two different implementations that utilize a shared storage

space.

In the current system, the logic contract (StrategyV5Agent in this case) will inherit two implementations

that declare storage variables while the proxy contract (StrategyV5) will inherit three implementations.

This can trivially result in clash of storage space which could ultimately result in data corruption and/or

loss.

We recommend the storage of the contracts to be decoupled entirely in a single dedicated

implementation, permitting it to be maintained and expanded as required between updates.

We advise the Astrolab DAO team to closely evaluate all minor-and-above findings identified in the report

and promptly remediate them as well as consider all optimizational exhibits identified in the report.

Audit Overview

https://eips.ethereum.org/EIPS/eip-4626

The Post-Audit Conclusion chapters of the audit report are presented in historical order from oldest to

latest. To evaluate the latest state of the codebase, kindly proceed to the last Post-Audit Conclusion

chapter of the audit report.

The Astrolab DAO team iterated through all findings within the report and provided us with a revised

commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Astrolab DAO and have identified that certain exhibits have not

been adequately dealt with. We advise the Astrolab DAO team to revisit the following exhibits which have

either been partially alleviated, not alleviated, or incorrectly alleviated: A62-12M , AME-01M , ASS-04M ,

CUS-01C , ASS-02M , A62-08M , A62-07M , A62-11M , SVA-04M , AAS-01M , AAS-02M , SV5-03M , PUS-01C

Additionally, the following informational findings remain either partially addressed or unaddressed and

should be revisited: ASS-02C , ASS-01C , ASS-03C , AME-02C , AMS-01C , AMS-04C , AMS-02C , AMS-03C ,

ARA-01C , ARE-04C , ARE-02C , SVA-01C , AAS-02C , SV5-02C , SV5-04C , SV5-06C

Post-Audit Conclusion

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-12M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-08M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-07M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C

The Astrolab DAO team provided us with a follow-up commit to evaluate additional remediations carried

out for the instances that remained open in the previous round, as well as general adjustments in relation

to the EIP-7540 compliancy of the As4626 implementation.

We observed that exhibit A62-11M which concerns EIP-7540 compliancy is still not resolved despite the

change in the project's direction to solely support redemption requests as the EIP is still not satisfied in

this regard.

In addition to the aforementioned exhibits that remain open, the following exhibits have been marked as

acknowledged explicitly by the Astrolab DAO team: AME-01M , AME-02C , ASS-01C , ASS-02C , ASS-03C ,

AAS-02C , SV5-06C , AMS-01C , AMS-02C , AMS-03C , AMS-04C , ARA-01C , ARE-02C , ARE-04C , SV5-03M

Finally, in between the production of the previous final iteration and the current version, we came in

contact with the Pyth Network team to clarify what limitations should be imposed on their oracles.

The Pyth Network team contradicted the SDK implementation and instead clarified that the exponents

supported by the Pyth Network oracle software are within the following range: [-12,12]

In light of this information, we advise the PythProvider::_toUsdBp function to be updated with those

exponents in mind properly supporting positive as well as negative exponents which it presently does not.

Post-Audit Conclusion (efbeab6478)

https://eips.ethereum.org/EIPS/eip-7540
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://eips.ethereum.org/EIPS/eip-7540
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/PythProvider.sol#L66-L93

The Astrolab DAO team revisited a subset of the exhibits mentioned in the previous chapter; namely:

A62-11M , AAS-02C , AMS-02C , AMS-04C , ARE-02C

All aforementioned exhibits have been properly alleviated in the latest commit hash of the codebase that

was evaluated, and any that were not mentioned have been marked as acknowledged.

Additionally, the PythProvider related concerns have been addressed by incorporating support for

positive exponents as well as adjusting the range of permitted exponent values.

We consider all outputs of the audit report properly consumed by the Astrolab DAO team, and no further

remediative actions are expected.

Post-Audit Conclusion (cf5194da53)

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C

Severity Identified Alleviated Partially Alleviated Acknowledged

0 0 0 0

64 52 0 12

23 22 0 1

0 0 0 0

9 9 0 0

During the audit, we filtered and validated a total of 7 findings utilizing static analysis tools as well as

identified a total of 89 findings during the manual review of the codebase. We strongly recommend that

any minor severity or higher findings are dealt with promptly prior to the project's launch as they can

introduce potential misbehaviours of the system as well as exploits.

Audit Synopsis

Scope

The audit engagement encompassed a specific list of contracts that were present in the commit hash of

the repository that was in scope. The tables below detail certain meta-data about the target of the

security assessment and a navigation chart is present at the end that links to the relevant findings per file.

Repository: https://github.com/AstrolabDAO/strats

Commit: 5427ca2aaaafa0be3b90fc057a8b79f4088cba32

Language: Solidity

Network: arbitrum, optimism, base, polygon, linea, scroll, mantle, gnosis, moonbeam

Revisions: 5427ca2aaa, 59b75fbee1, efbeab6478, cf5194da53

File Total Finding(s)

17

1

6

4

0

7

6

1

5

4

Target

Contracts Assessed

src/abstract/As4626.sol (A62)

src/libs/AsCast.sol (ACT)

src/libs/AsMaths.sol (AMS)

src/abstract/AsProxy.sol (APY)

src/abstract/AsTypes.sol (ATS)

src/libs/AsArrays.sol (AAS)

src/abstract/AsRescuable.sol (ARE)

src/libs/AsAccounting.sol (AAG)

src/abstract/AsManageable.sol (AME)

src/abstract/As4626Abstract.sol (AAT)

https://github.com/AstrolabDAO/strats
https://github.com/AstrolabDAO/strats/tree/5427ca2aaaafa0be3b90fc057a8b79f4088cba32
https://github.com/AstrolabDAO/strats/tree/59b75fbee1d8f3dee807c928f18be41c58b904e1
https://github.com/AstrolabDAO/strats/tree/efbeab6478c33d629e4423f01f3c819a8d365093
https://github.com/AstrolabDAO/strats/tree/cf5194da53ebf026da6c8efa74daada96719cc71
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsTypes.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol

3

9

1

2

2

11

3

7

1

6

src/abstract/AsAccessControl.sol (AAC)

src/libs/AsSequentialSet.sol (ASS)

src/abstract/AsRescuableAbstract.sol (ARA)

src/libs/ChainlinkUtils.sol (CUS)

src/libs/PythUtils.sol (PUS)

src/abstract/StrategyV5.sol (SV5)

src/abstract/StrategyV5Pyth.sol (SVP)

src/abstract/StrategyV5Agent.sol (SVA)

src/abstract/StrategyV5Abstract.sol (SVT)

src/abstract/StrategyV5Chainlink.sol (SVC)

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuableAbstract.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts

coded in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat :

The hardhat tool automatically selects Solidity version 0.8.22 based on the version specified within the

hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used as the pragma statements of

the contracts are open-ended (^0.8.0).

We advise them to be locked to 0.8.22 (=0.8.22), the same version utilized for our static analysis as well

as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or

bytecode size of the contracts.

To note, the compiler version utilized makes use of the Shanghai target EVM and thus will introduce the

PUSH0 opcode which is incompatible with certain Layer-2 chains.

We advise the Astrolab DAO team to evaluate whether the chains they wish to deploy their contracts to

properly support the operation code when they intend to deploy so as to avoid any deployment failures

and thus waste of resources.

npx hardhat compile

BASH

Static Analysis

The execution of our static analysis toolkit identified 83 potential issues within the codebase of which 67

were ruled out to be false positives or negligible findings.

The remaining 16 issues were validated and grouped and formalized into the 7 exhibits that follow:

ID Severity Addressed Title

A62-01S Inexistent Event Emissions

AAT-01S Inexistent Event Emission

AMS-01S Illegible Numeric Value Representation

ARE-01S Inexistent Visibility Specifiers

ARE-02S Deprecated Native Asset Transfer

SV5-01S Inexistent Event Emission

SVC-01S Inexistent Event Emission

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/As4626-A62#A62-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/As4626Abstract-AAT#AAT-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsMaths-AMS#AMS-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsRescuable-ARE#ARE-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/AsRescuable-ARE#ARE-02S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/StrategyV5-SV5#SV5-01S
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/static-analysis/StrategyV5Chainlink-SVC#SVC-01S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and

vulnerabilities in Astrolab DAO's base strategy contracts.

As the project at hand implements custom proxies w/ extensive assembly blocks, intricate care was put

into ensuring that the flow of funds within the system conforms to the specifications and restrictions

laid forth within the protocol's specification and that the EVM's restrictions are adhered to in all

statements.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary

formulas within the system execute as expected. We pinpointed multiple significant vulnerabilities

within the system which could have had severe ramifications to its overall operation; we urge the

Astrolab DAO team to promptly evaluate and remediate them.

Additionally, the system was investigated for any other commonly present attack vectors such as re-

entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The

documentation of the project was satisfactory to the extent it need be, however, certain areas of the

codebase such as expected EIP-7540 conformity should be expanded upon.

A total of 89 findings were identified over the course of the manual review of which 36 findings

concerned the behaviour and security of the system. The non-security related findings, such as

optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

A62-01M Discrepancy of Access Control

A62-02M Improper Allowance Adjustment

A62-03M Improper Capture of Entry Fee

A62-04M Improper Capture of Exit Fee

A62-05M Incorrect Estimation of Deposits

https://eips.ethereum.org/
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-05M

A62-06M Incorrect Estimation of Withdrawals

A62-07M Incorrect Maintenance of Allowances in Redemption Requests

A62-08M Inexistent Protection Against Re-Initialization

A62-09M Potentially Invalid Cancellation Assumption

A62-10M Improper Accounting of Fees in Downward Price Action

A62-11M Incorrect Implementation of EIP-7540

A62-12M Inexistent Reservation of Shares

AAT-01M EIP-7540 Incompatibility

AAS-01M Incorrect EVM Memory Assumptions

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-06M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-07M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-08M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-09M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-10M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-11M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626-A62#A62-12M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/As4626Abstract-AAT#AAT-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-01M

AAS-02M Incorrect Usage of Memory

ACT-01M Potentially Insecure Address Cast

AME-01M Invalid Conditional Evaluation

AME-02M Detachment of Authorized Role

AMS-01M Improper Absolute Function Implementation

APY-01M Reservation of Function Signatures

APY-02M Potentially Insecure Utilization of Scratch Space

APY-03M Insecure Forwarded Payload

ASS-01M Improper Sequential Set Shift Operation

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsArrays-AAS#AAS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsCast-ACT#ACT-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsManageable-AME#AME-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsMaths-AMS#AMS-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsProxy-APY#APY-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-01M

ASS-02M Inexistent Prevention of Duplicate Elements

ASS-03M Invalid Sequential Set Shift Operation

ASS-04M Invalid Sequential Set Unshift Operation

SV5-01M Implementation & Documentation Mismatch

SV5-02M Discrepancy of Liquidation Preview

SV5-03M Insecure Casting Operations

SVA-01M Discrepant Allowance Maintenance

SVA-02M Improper No-Op Logic Statement

SVA-03M Inexistent Erasure of Previous Approvals

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/AsSequentialSet-ASS#ASS-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5-SV5#SV5-03M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-02M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-03M

SVA-04M Inexistent Protection Against Re-Initialization

SVA-05M Insecure Approval Operations

SVC-01M Inexistent Prevention of Data Corruption

SVC-02M Inexistent Validation of Prices

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-04M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Agent-SVA#SVA-05M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Chainlink-SVC#SVC-01M
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/manual-review/StrategyV5Chainlink-SVC#SVC-02M

Code Style

During the manual portion of the audit, we identified 53 optimizations that can be applied to the

codebase that will decrease the operational cost associated with the execution of a particular function

and generally ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should

make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

A62-01C Inefficient mapping Lookups

A62-02C Redundant Duplication of Code

A62-03C Redundant Parenthesis Statements

A62-04C Repetitive Value Literal

AAT-01C Generic Typographic Mistakes

AAT-02C Improper Declaration of Abstract Function

AAC-01C Inefficient Usage of Utility Functions

AAC-02C Redundant Input Argument

AAC-03C Redundant Local Variable

AAG-01C Repetitive Value Literal

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626-A62#A62-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626Abstract-AAT#AAT-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/As4626Abstract-AAT#AAT-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccessControl-AAC#AAC-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsAccounting-AAG#AAG-01C

AAS-01C Ineffectual Usage of Safe Arithmetics

AAS-02C Inefficient Iteration of Search Loops

AAS-03C Inefficient Iterator Type

AAS-04C Inexistent Error Messages

AAS-05C Loop Iterator Optimizations

AME-01C Generic Typographic Mistakes

AME-02C Inexistent Error Message

AME-03C Redundant Parenthesis Statements

AMS-01C Generic Typographic Mistakes

AMS-02C Ineffectual Usage of Safe Arithmetics

AMS-03C Inexistent Error Messages

AMS-04C Redundant Parenthesis Statements

APY-01C Inefficient Generation of Selector

ARE-01C Improper Declarations of Abstract Functions

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsArrays-AAS#AAS-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsManageable-AME#AME-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsMaths-AMS#AMS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsProxy-APY#APY-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-01C

ARE-02C Inefficient Erasure of Request

ARE-03C Inefficient mapping Lookups

ARE-04C Inexistent Error Messages

ARA-01C Optimization of Data Structure

ASS-01C Ineffectual Usage of Safe Arithmetics

ASS-02C Inefficient Loop Limit Evaluations

ASS-03C Inexistent Error Message

ASS-04C Loop Iterator Optimization

ASS-05C Redundant Deletion Operation

CUS-01C Ineffectual Usage of Safe Arithmetics

CUS-02C Repetitive Value Literal

PUS-01C Ineffectual Usage of Safe Arithmetics

PUS-02C Repetitive Value Literal

SV5-01C Generic Typographic Mistake

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuable-ARE#ARE-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsRescuableAbstract-ARA#ARA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/AsSequentialSet-ASS#ASS-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/ChainlinkUtils-CUS#CUS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/PythUtils-PUS#PUS-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-01C

SV5-02C Improper Declarations of Abstract Functions

SV5-03C Ineffectual Usage of Safe Arithmetics

SV5-04C Inefficient Iterator Type

SV5-05C Loop Iterator Optimizations

SV5-06C Redundant Application of Access Control

SV5-07C Redundant Parenthesis Statement

SVT-01C Generic Typographic Mistakes

SVA-01C Inefficient Iterator Type

SVA-02C Loop Iterator Optimizations

SVC-01C Generic Typographic Mistake

SVC-02C Loop Iterator Optimization

SVC-03C Repetitive Value Literal

SVP-01C Generic Typographic Mistake

SVP-02C Loop Iterator Optimizations

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-04C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-05C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-06C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5-SV5#SV5-07C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Abstract-SVT#SVT-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Agent-SVA#SVA-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-02C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Chainlink-SVC#SVC-03C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-01C
https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-02C

SVP-03C Repetitive Value Literal

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/code-style/StrategyV5Pyth-SVP#SVP-03C

As4626 Static Analysis Findings

Type Severity Location

Language Specific , , , ,

The linked functions adjust sensitive contract variables yet do not emit an event for it.

src/abstract/As4626.sol

A62-01S: Inexistent Event Emissions

As4626.sol:L353-L356 L362-L364 L370-L372 L378-L380 L41

Description:

Example:

function setMaxSlippageBps(uint16 _slippageBps) external onlyManager {

 maxSlippageBps = _slippageBps;

}

SOL

362

363

364

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L353-L356
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L362-L364
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L370-L372
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L378-L380
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L411-L414

We advise an event to be declared and correspondingly emitted for each function to ensure off-chain

processes can properly react to this system adjustment.

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

As4626Abstract Static Analysis Findings

Type Severity Location

Language Specific

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

src/abstract/As4626Abstract.sol

AAT-01S: Inexistent Event Emission

As4626Abstract.sol:L98-L100

Description:

Example:

function setExemption(address _account, bool _isExempt) public onlyAdmin {

 exemptionList[_account] = _isExempt;

}

SOL

98

99

100

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L98-L100

We advise an event to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsMaths Static Analysis Findings

Type Severity Location

Code Style

The linked representation of a numeric literal is sub-optimally represented decreasing the legibility of the

codebase.

src/libs/AsMaths.sol

AMS-01S: Illegible Numeric Value Representation

AsMaths.sol:L22

Description:

Example:

uint256 internal constant BP_BASIS = 10_000; // 50% == 5_000 == 5e3

SOL

22

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L22

To properly illustrate the value's purpose, we advise the following guidelines to be followed.
For values

meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17

becomes 0.1e18) as they are supported.
For values meant to represent a percentage base, we advise

each value to utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes

100_00 , 300 becomes 3_00 and so on).
Finally, for large numeric values we simply advise the underscore

character to be utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The referenced value literal has been updated in its representation to 100_00 in accordance with the

recommendation's underscore style, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsRescuable Static Analysis Findings

Type Severity Location

Code Style ,

The linked variables have no visibility specifier explicitly set.

src/abstract/AsRescuable.sol

ARE-01S: Inexistent Visibility Specifiers

AsRescuable.sol:L21 L22

Description:

Example:

uint64 constant RESCUE_TIMELOCK = 2 days;

SOL

21

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L21
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L22

We advise them to be set so to avoid potential compilation discrepancies in the future as the current

behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

The public visibility specifier has been introduced to all referenced variables, preventing potential

compilation discrepancies and addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Language Specific

The linked statement performs a low-level native asset transfer via the transfer function exposed by the

address payable data type.

As new EIPs such as EIP-2930 are introduced to the blockchain, gas costs can change and the transfer

instruction of Solidity specifies a fixed gas stipend that is prone to failure should such changes be

integrated to the blockchain the contract is deployed in. A prime example of this behaviour are legacy

versions of Gnosis which were susceptible to this issue and would cause native transfers to fail if sent to a

new address.

src/abstract/AsRescuable.sol

ARE-02S: Deprecated Native Asset Transfer

AsRescuable.sol:L88

Description:

Impact:

Example:

payable(req.receiver).transfer(address(this).balance);

SOL

88

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L88

We advise alternative ways of transferring assets to be utilized instead, such as OpenZeppelin's

Address.sol library and in particular the sendValue method exposed by it. If re-entrancies are desired to

be prevented based on gas costs, we instead advise a mechanism to be put in place that either credits an

account with a native balance they can withdraw at a secondary transaction or that performs the native

asset transfers at the end of the top-level transaction's execution.

The native payment has been replaced by a low-level call interaction that supplies the full available gas

allowance to the call thus ensuring it will succeed regardless of the underlying blockchain the contract is

deployed in or the nature of the recipient.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5 Static Analysis Findings

Type Severity Location

Language Specific

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

src/abstract/StrategyV5.sol

SV5-01S: Inexistent Event Emission

StrategyV5.sol:L98-L101

Description:

Example:

function updateAgent(address _agent) external onlyAdmin {

 if (_agent == address(0)) revert AddressZero();

 agent = _agent;

}

SOL

98

99

100

101

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L98-L101

We advise an event to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Chainlink Static Analysis Findings

Type Severity Location

Language Specific

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

src/abstract/StrategyV5Chainlink.sol

SVC-01S: Inexistent Event Emission

StrategyV5Chainlink.sol:L55-L59

Description:

Example:

function setPriceFeed(address _address, IChainlinkAggregatorV3 _feed, uint256

_validity) public onlyAdmin {

 feedByAsset[_address] = _feed;

 decimalsByFeed[_feed] = feedByAsset[_address].decimals();

 validityByFeed[feedByAsset[_address]] = _validity;

}

SOL

55

56

57

58

59

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59

We advise an event to be declared and correspondingly emitted to ensure off-chain processes can

properly react to this system adjustment.

The Astrolab DAO team evaluated this exhibit and specified that they have consciously removed certain

event emissions due to their impact on the bytecode size of the contracts.

In light of this issue, critical events have been selectively re-introduced where possible in compliance with

the bytecode size limitations of the blockchain the contracts are deployed in.

As such, we consider this exhibit addressed to the greatest extent possible when acknowledging EVM

related constraints.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

As4626 Manual Review Findings

Type Severity Location

Logical Fault , , ,

The As4626::withdraw and As4626::redeem functions prevent invocation if the _owner of the shares

being withdrawn is not the msg.sender , however, their safe -prefixed counterparts do not perform such

validation.

Additionally, the As4626::_withdraw implementation properly supports allowance consumptions so the

presence of access control is contradictory.

While the discrepancy itself does not result in any vulnerability due to proper allowance management in

the As4626::_withdraw function, we still consider it to be a non-informational issue in the code as it

could have had a significant impact to its security.

src/abstract/As4626.sol

A62-01M: Discrepancy of Access Control

As4626.sol:L231 L249 L266 L284-L289

Description:

Impact:

Example:

/**

 * @notice Withdraw by burning the equivalent _owner's shares and sending _amount

of asset to _receiver

 * @dev Beware, there's no slippage control - use safeWithdraw if you want it

 * @param _amount Amount of asset tokens to withdraw

 * @param _receiver Who will get the withdrawn assets

 * @param _owner Whose shares we'll burn

 * @return shares Amount of shares burned

 */

function withdraw(

 uint256 _amount,

SOL

218

219

220

221

222

223

224

225

226

227

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L226-L233
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L261-L268
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L231
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L249
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L266
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L284-L289

Example (Cont.):

 address _receiver,

 address _owner

) external whenNotPaused returns (uint256) {

 if (_owner != msg.sender) revert Unauthorized();

 return _withdraw(_amount, previewWithdraw(_amount, _owner), _receiver,

_owner);

}

/**

 * @notice Withdraw assets denominated in asset

 * @dev Overloaded version with slippage control

 * @param _amount Amount of asset tokens to withdraw

 * @param _receiver Who will get the withdrawn assets

 * @param _owner Whose shares we'll burn

 * @return amount Amount of shares burned

 */

function safeWithdraw(

 uint256 _amount,

 uint256 _minAmount,

 address _receiver,

 address _owner

) public whenNotPaused returns (uint256 amount) {

 amount = _withdraw(_amount, previewWithdraw(_amount, _owner), _receiver,

_owner);

 if (amount < _minAmount) revert AmountTooLow(amount);

}

SOL

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

We advise access control to either be imposed on all variants of these functions or to be omitted entirely,

either of which we consider an adequate resolution to this exhibit.

Both functions and their safe -prefixed counterparts now properly support allowance-based authorization

of the msg.sender , ensuring uniform behaviour across the functions by addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Logical Fault

An As4626::cancelRedeemRequest operation will consume the allowance between the _operator and

the _owner only if the opportunityCost is greater than 0 , however, the adjustment will be for the full

shares amount.

The present mechanism will most likely consume a higher allowance than it should incorrectly.

src/abstract/As4626.sol

A62-02M: Improper Allowance Adjustment

As4626.sol:L690-L694

Description:

Impact:

Example:

// Adjust the operator's allowance after burning shares, only if the operator is

different from the owner

if (opportunityCost > 0 && _owner != msg.sender) {

 uint256 currentAllowance = allowance(_owner, _operator);

 _approve(_owner, _operator, currentAllowance - shares);

}

SOL

690

691

692

693

694

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L663-L697
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L690-L694

We advise this approach to be revised as it is presently invalid. The code should either revoke an approval

equivalent to the opportunityCost , or should unconditionally revoke the full approval of the shares .

The approval adjustment properly utilizes the opportunityCost in the latest implementation, addressing

this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Mathematical Operations

Any deposit-related function that utilizes As4626::previewDeposit will suffer truncation in contrast to

the As4626::previewMint function as the basis point percentages are applied in a rounding-prone way.

Fees captured from deposits and their respective deposit amount may not sum up to the actual amount

the user supplied due to truncation.

src/abstract/As4626.sol

A62-03M: Improper Capture of Entry Fee

As4626.sol:L130

Description:

Impact:

Example:

/**

 * @notice Previews the amount of shares that will be minted for a given deposit

amount

 * @param _amount Amount of asset tokens to deposit

 * @param _receiver The future owner of the shares to be minted

 * @return shares Amount of shares that will be minted

 */

function previewDeposit(uint256 _amount, address _receiver) public view returns

(uint256 shares) {

 return convertToShares(_amount, false).subBp(exemptionList[_receiver] ? 0 :

fees.entry);

}

SOL

466

467

468

469

470

471

472

473

474

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L130

The flaw arises from the following misconception:

We advise the basis-point related calculations to be streamlined across the codebase, ensuring that

truncation is accounted for by utilizing the remainder of the amount after the fee's application.

The code has been refactored to no longer use the preview -related functions in the input _shares of the

As4626::_deposit function, calculating the fee locally instead.

In this implementation, the actual deposited amount is calculated as the original amount minus the fee

captured, ensuring that any truncation which may occur is solely reflected in the fee and does not impact

the deposited amount.

As such, we consider this exhibit fully alleviated.

Recommendation:

x ∗ 100

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L85-L117

Type Severity Location

Mathematical Operations ,

Any withdrawal-related function that utilizes As4626::previewRedeem will suffer truncation in contrast to

the As4626::previewWithdraw function as the basis point percentages are applied in a rounding-prone

way.

Fees captured from withdrawals and their respective withdrawal amount may not sum up to the actual

amount that the user is entitled to due to truncation.

src/abstract/As4626.sol

A62-04M: Improper Capture of Exit Fee

As4626.sol:L267 L285

Description:

Impact:

Example:

/**

 * @notice Redeems/burns _owner's shares and sends the equivalent amount in asset

to _receiver

 * @dev Beware, there's no slippage control - you need to use the overloaded

function if you want it

 * @param _shares Amount of shares to redeem

 * @param _receiver Who will get the withdrawn assets

 * @param _owner Whose shares we'll burn

 * @return assets Amount of assets withdrawn

 */

function redeem(

 uint256 _shares,

SOL

253

254

255

256

257

258

259

260

261

262

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L267
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L285

Example (Cont.):

 address _receiver,

 address _owner

) external whenNotPaused returns (uint256 assets) {

 if (_owner != msg.sender) revert Unauthorized();

 return _withdraw(previewRedeem(_shares, _owner), _shares, _receiver, _owner);

}

/**

 * @dev Overloaded version with slippage control

 * @param _shares Amount of shares to redeem

 * @param _minAmountOut The minimum amount of assets accepted

 * @param _receiver Who will get the withdrawn assets

 * @param _owner Whose shares we'll burn

 * @return assets Amount of assets withdrawn

 */

function safeRedeem(

 uint256 _shares,

 uint256 _minAmountOut,

 address _receiver,

 address _owner

) external whenNotPaused returns (uint256 assets) {

 assets = _withdraw(

 previewRedeem(_shares, _owner),

 _shares, // _shares

 _receiver, // _receiver

 _owner // _owner

);

 if (assets < _minAmountOut) revert AmountTooLow(assets);

SOL

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Example (Cont.):

}

SOL

291

The flaw arises from the following misconception:

We advise the basis-point related calculations to be streamlined across the codebase, ensuring that

truncation is accounted for by utilizing the remainder of the amount after the fee's application.

The code has been refactored to no longer use the preview -related functions in the input _amount of the

As4626::_withdraw function, calculating the fee locally instead.

In this implementation, the actual withdrawn amount is calculated as the original amount minus the fee

captured, ensuring that any truncation which may occur is solely reflected in the fee and does not impact

the withdrawn amount.

As such, we consider this exhibit fully alleviated.

Recommendation:

x ∗ 100

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L158-L216

Type Severity Location

Mathematical Operations ,

The As4626::previewDeposit function will incorrectly estimate the amount of shares the operation will

result in as it will apply the entry fee on the shares minted rather than the tokens deposited, causing

truncation issues to lead to different results.

As shares will most likely have a lower accuracy than the assets deposited, the truncation will be more

severe and thus underestimate the amount of shares that will be minted.

src/abstract/As4626.sol

A62-05M: Incorrect Estimation of Deposits

As4626.sol:L452 L473

Description:

Impact:

Example:

/**

 * @notice Previews the amount of shares that will be minted for a given deposit

amount

 * @param _amount Amount of asset tokens to deposit

 * @param _receiver The future owner of the shares to be minted

 * @return shares Amount of shares that will be minted

 */

function previewDeposit(uint256 _amount, address _receiver) public view returns

(uint256 shares) {

 return convertToShares(_amount, false).subBp(exemptionList[_receiver] ? 0 :

fees.entry);

}

SOL

466

467

468

469

470

471

472

473

474

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L472-L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L452
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L473

We advise the code to properly apply the entry fee to the input _amount , simulating the behaviour of the

As4626::_deposit function.

The entry fee is correctly applied to the input _amount of the As4626::previewDeposit function in the

latest implementation, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L85-L117
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L472-L474

Type Severity Location

Mathematical Operations ,

The As4626::previewWithdraw function will incorrectly estimate the amount of shares the operation will

burn as it will apply the exit fee on the shares burned rather than the tokens withdrawn, causing

truncation issues to lead to different results.

As shares will most likely have a lower accuracy than the assets deposited, the truncation will be more

severe and thus overestimate the amount of shares that will be burned.

src/abstract/As4626.sol

A62-06M: Incorrect Estimation of Withdrawals

As4626.sol:L495 L516

Description:

Impact:

Example:

/**

 * @notice Preview how many shares the caller needs to burn to get his assets

back

 * @dev You may get less asset tokens than you expect due to slippage

 * @param _assets How much we want to get

 * @param _owner The owner of the shares to be redeemed

 * @return How many shares will be burnt

 */

function previewWithdraw(uint256 _assets, address _owner) public view returns

(uint256) {

 return convertToShares(_assets, true).revAddBp(exemptionList[_owner] ? 0 :

fees.exit);

}

SOL

487

488

489

490

491

492

493

494

495

496

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L494-L496
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L495
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L516

We advise the code to properly apply the exit fee to the output _amount , simulating the behaviour of the

As4626::_withdraw function.

The exit fee is correctly applied to the input _amount of the As4626::previewWithdraw function in the

latest implementation, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L158-L216
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L494-L496

Type Severity Location

Logical Fault , ,

The creation of a redemption request will correctly ensure the caller (i.e. _operator) has been authorized

to create the request (in case they are not the _owner themselves), however, the same approval will be

incorrectly validated for cancellations as well as processing of these requests.

A redemption request that was planned for another user can be trivially hijacked by the original _owner if

they revoke their allowance, a trait we consider invalid in the system albeit with a small consequence.

src/abstract/As4626.sol

A62-07M: Incorrect Maintenance of Allowances in Redemption
Requests

As4626.sol:L179 L670 L693

Description:

Impact:

Example:

/**

 * @notice Initiate a redeem request for shares

 * @param _shares Amount of shares to redeem

 * @param _operator Address initiating the request

 * @param _owner The owner of the shares to be redeemed

 */

function requestRedeem(

 uint256 _shares,

 address _operator,

 address _owner,

SOL

579

580

581

582

583

584

585

586

587

588

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L179
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L670
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L693

Example (Cont.):

 bytes memory _data

) public nonReentrant whenNotPaused returns (uint256 _requestId) {

 if (_operator != msg.sender || (_owner != msg.sender && allowance(_owner,

_operator) < _shares))

 revert Unauthorized();

 if (_shares == 0 || balanceOf(_owner) < _shares)

 revert AmountTooLow(_shares);

 Erc7540Request storage request = req.byOwner[_owner];

 if (request.operator != _operator) request.operator = _operator;

 last.sharePrice = sharePrice();

 if (request.shares > 0) {

 if (request.shares > _shares)

 revert AmountTooLow(_shares);

 // reinit the request (re-added lower)

 req.totalRedemption -= AsMaths.min(

 req.totalRedemption,

 request.shares

);

 // compute request vwap

 request.sharePrice =

 ((last.sharePrice * (_shares - request.shares)) + (request.sharePrice

* request.shares)) /

 _shares;

 } else {

 request.sharePrice = last.sharePrice;

 }

SOL

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Example (Cont.):

 _requestId = ++requestId;

 request.requestId = _requestId;

 request.shares = _shares;

 request.timestamp = block.timestamp;

 req.totalRedemption += _shares;

 if(_data.length != 0) {

 // the caller contract must return the bytes4 value "0x0102fde4"

 if(IERC7540RedeemReceiver(msg.sender).onERC7540RedeemReceived(_operator,

_owner, _requestId, _data) != 0x0102fde4)

 revert Unauthorized();

 }

 emit RedeemRequest(_owner, _operator, _owner, _shares);

}

/**

 * @notice Initiate a withdraw request for assets denominated in asset

 * @param _amount Amount of asset tokens to withdraw

 * @param _operator Address initiating the request

 * @param _owner The owner of the shares to be redeemed

 * @param _data Additional data

 * @return requestId The ID of the withdraw request

 */

function requestWithdraw(

 uint256 _amount,

 address _operator,

 address _owner,

 bytes memory _data

) external returns (uint256) {

SOL

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Example (Cont.):

 return requestRedeem(convertToShares(_amount, false), _operator, _owner,

_data);

}

// /**

// * @notice Cancel a deposit request

// * @param operator Address initiating the request

// * @param owner The owner of the shares to be redeemed

// */

// function cancelDepositRequest(

// address operator,

// address owner

//) external virtual nonReentrant {}

/**

 * @notice Cancel a redeem request

 * @param _operator Address initiating the request

 * @param _owner The owner of the shares to be redeemed

 */

function cancelRedeemRequest(

 address _operator,

 address _owner

) external nonReentrant {

 Erc7540Request storage request = req.byOwner[_owner];

 uint256 shares = request.shares;

 if (_operator != msg.sender || (_owner != msg.sender && allowance(_owner,

_operator) < shares))

 revert Unauthorized();

 if (shares == 0) revert AmountTooLow(0);

SOL

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

Example (Cont.):

 last.sharePrice = sharePrice();

 uint256 opportunityCost = 0;

 if (last.sharePrice > request.sharePrice) {

 // burn the excess shares from the loss incurred while not farming

 // with the idle funds (opportunity cost)

 opportunityCost = shares.mulDiv(

 last.sharePrice - request.sharePrice,

 weiPerShare

); // eg. 1e8+1e8-1e8 = 1e8

 _burn(_owner, opportunityCost);

 }

 req.totalRedemption -= shares;

 if (isRequestClaimable(request.timestamp))

 req.totalClaimableRedemption -= shares;

 // Adjust the operator's allowance after burning shares, only if the operator

is different from the owner

 if (opportunityCost > 0 && _owner != msg.sender) {

 uint256 currentAllowance = allowance(_owner, _operator);

 _approve(_owner, _operator, currentAllowance - shares);

 }

 request.shares = 0;

 emit RedeemRequestCanceled(_owner, shares);

}

SOL

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

We advise the code to consume the allowance during a redemption request's creation, and to permit the

creator of the request (i.e. caller of As4626::requestRedeem) to either cancel or claim the request.

While allowance is properly consumed during the creation of a redemption request, allowance remains

validated in the As4626::cancelRedeemRequest .

As a redemption request should be possible to cancel even if the original requester does not have any

allowance anymore, we re-iterate our original advice to omit allowance checks and supplement it with a

recommendation to apply the opportunityCost allowance adjustment opportunistically (i.e. if

currentAllowance - opportunityCost < 0 , allowance should be configured to 0).

The code has been alleviated per our recommendation, omitting the allowance related checks during

redemption request cancellations and ensuring that the allowance of the _operator is reduced up to 0

safely.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L663-L697

Type Severity Location

Logical Fault

The As4626::init function does not prevent against re-initialization, causing the timestamps of the

last data entry to be corrupted as well as permitting the name, symbol, and decimals of the ERC20

representation of the contract to be adjusted post-deployment.

A severity of minor has been assigned as the function is privileged, however, its impact is significant as

fees can be lost and impersonation attacks can be performed.

src/abstract/As4626.sol

A62-08M: Inexistent Protection Against Re-Initialization

As4626.sol:L46-L62

Description:

Impact:

Example:

/**

 * @dev Initializes the contract with the provided ERC20 metadata, core

addresses, and fees.

 * Only the admin can call this function.

 * @param _erc20Metadata The ERC20 metadata including name, symbol, and decimals.

 * @param _coreAddresses The core addresses including the fee collector address.

 * @param _fees The fees structure.

 */

function init(

 Erc20Metadata calldata _erc20Metadata,

 CoreAddresses calldata _coreAddresses,

SOL

39

40

41

42

43

44

45

46

47

48

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L46-L62
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L46-L62

Example (Cont.):

 Fees calldata _fees

) public virtual onlyAdmin {

 // check that the fees are not too high

 setFees(_fees);

 feeCollector = _coreAddresses.feeCollector;

 req.redemptionLocktime = 6 hours;

 last.accountedSharePrice = weiPerShare;

 last.accountedProfit = weiPerShare;

 last.feeCollection = uint64(block.timestamp);

 last.liquidate = uint64(block.timestamp);

 last.harvest = uint64(block.timestamp);

 last.invest = uint64(block.timestamp);

 ERC20._init(_erc20Metadata.name, _erc20Metadata.symbol,

_erc20Metadata.decimals);

}

SOL

49

50

51

52

53

54

55

56

57

58

59

60

61

62

We advise the function to prevent re-invocation via a dedicated variable, ensuring the contract cannot be

re-initialized.

The Astrolab DAO team specified that they intend to supply an initialized public bool that will prevent

re-initialization, however, no such change has been incorporated in the codebase yet.

As such, we consider this exhibit open in the codebase's current state.

An if clause was introduced ensuring that the _initialized flag of the ERC20 parent implementation is

false and reverting otherwise.

As such, we consider this exhibit properly alleviated.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

Type Severity Location

Logical Fault ,

The As4626::cancelRedeemRequest will update the totalClaimableRedemption data entry even if the

redemption request has not been factored in a liquidation call as the As4626::isRequestClaimable

function does not guarantee a liquidation has taken place.

Redemption requests that should be able to be cancelled may result in an uncaught underflow due to an

incorrect assumption in relation to whether a liquidation that satisfies the redemption has been performed

or not.

src/abstract/As4626.sol

A62-09M: Potentially Invalid Cancellation Assumption

As4626.sol:L687 L688

Description:

Impact:

Example:

if (isRequestClaimable(request.timestamp))

 req.totalClaimableRedemption -= shares;

SOL

687

688

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L663-L697
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L747-L755
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L687
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L688

We advise the code to ensure a liquidation has happened after the request has occurred, ensuring that

the totalClaimableRedemption has a high likelihood of incorporating the shares that were meant to be

liquidated.

The conditional has been updated to ensure that the redemption amount has been factored in a

liquidation call by validating whether the request's timestamp is older than the last liquidation that

occurred.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Logical Fault , ,

The As4626::_collectFees function will become permanently inaccessible if a downward price action

has occurred while a non-zero claimableAssetFees value exists. Such an action will cause the

As4626::_collectFees function to continue execution while all values yielded by the

AsAccounting::computeFees function are 0 , resulting in the accountedSharePrice being configured to

0 .

This will cause any invocation of AsAccounting::computeFees to first compute a change equal to the

share price itself (which is invalid), and then cause the code to yield a division-by-zero error due to

attempting to calculate the profit .

All fees will become permanently inaccessible if a downward action occurs for the share and at least a

single withdrawal / deposit has occurred for the vault which is a highly likely scenario.

src/abstract/As4626.sol

A62-10M: Improper Accounting of Fees in Downward Price Action

As4626.sol:L301 L304 L321

Description:

Impact:

Example:

/**

 * @notice Trigger a fee collection: mints shares to the feeCollector

 */

function _collectFees() internal nonReentrant returns (uint256 toMint) {

 if (feeCollector == address(0))

 revert AddressZero();

 (uint256 assets, uint256 price, uint256 profit, uint256 feesAmount) =

AsAccounting.computeFees(IAs4626(address(this)));

SOL

293

294

295

296

297

298

299

300

301

302

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L301
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L304
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L321

Example (Cont.):

 // sum up all fees: feesAmount (perf+mgmt) + claimableAssetFees (entry+exit)

 toMint = convertToShares(feesAmount + claimableAssetFees, false);

 // do not mint nor emit event if there are no fees to collect

 if (toMint == 0)

 return 0;

 emit FeeCollection(

 feeCollector,

 assets,

 price,

 profit, // basis AsMaths.BP_BASIS**2

 feesAmount,

 toMint

);

 _mint(feeCollector, toMint);

 last.feeCollection = uint64(block.timestamp);

 last.accountedAssets = assets;

 last.accountedSharePrice = price;

 last.accountedProfit = profit;

 last.accountedSupply = totalSupply();

 claimableAssetFees = 0;

}

SOL

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

We advise either the AsAccounting::computeFees implementation to yield non-zero values with a zero

feesAmount when returning early, or the As4626::_collectFees function to return early if just

feesAmount is 0 .

While we advise the former of the two to prevent time-based fees from accumulating when the share

moves in a downward manner, different approaches can also be utilized such as waiting until the share

price rebounds to the latest tracked one before charging fees.

The relevant function has been relocated to the StrategyV5Agent (StrategyV5Agent::_collectFees)

contract and the relevant AsAccounting function has been renamed to

AsAccounting::claimableDynamicFees .

In the renamed implementation, a case of no fees will properly yield the correct price as well as assets

value, permitting the logic to function properly thus alleviating this exhibit in full.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L33-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L296-L325

Type Severity Location

Logical Fault ,

The As4626 contract is meant to comply with the EIP-7540 standard, however, it deviates from it in both

its interface as well as the implementations of the various functions as denoted in the standard.

As an example, the As4626::requestRedeem function will invoke the

IERC7540RedeemReceiver::onERC7540RedeemReceived function on the msg.sender rather than the

_owner .

The As4626 is not compatible with the EIP-7540 standard, and one of the callbacks it performs during

redemption requests is done so to the caller rather than the _owner which is invalid behaviour.

src/abstract/As4626.sol

A62-11M: Incorrect Implementation of EIP-7540

As4626.sol:L585-L590 L625

Description:

Impact:

Example:

/**

 * @notice Initiate a redeem request for shares

 * @param _shares Amount of shares to redeem

 * @param _operator Address initiating the request

 * @param _owner The owner of the shares to be redeemed

 */

function requestRedeem(

 uint256 _shares,

 address _operator,

 address _owner,

SOL

579

580

581

582

583

584

585

586

587

588

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L590
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L625

Example (Cont.):

 bytes memory _data

) public nonReentrant whenNotPaused returns (uint256 _requestId) {

 if (_operator != msg.sender || (_owner != msg.sender && allowance(_owner,

_operator) < _shares))

 revert Unauthorized();

 if (_shares == 0 || balanceOf(_owner) < _shares)

 revert AmountTooLow(_shares);

 Erc7540Request storage request = req.byOwner[_owner];

 if (request.operator != _operator) request.operator = _operator;

 last.sharePrice = sharePrice();

 if (request.shares > 0) {

 if (request.shares > _shares)

 revert AmountTooLow(_shares);

 // reinit the request (re-added lower)

 req.totalRedemption -= AsMaths.min(

 req.totalRedemption,

 request.shares

);

 // compute request vwap

 request.sharePrice =

 ((last.sharePrice * (_shares - request.shares)) + (request.sharePrice

* request.shares)) /

 _shares;

 } else {

 request.sharePrice = last.sharePrice;

 }

SOL

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Example (Cont.):

We advise either the code to be substantially updated to comply with the EIP-7540 standard, or to

remove support of EIP-7540 and instead implement a custom EIP-7540 adaptation removing

unnecessary traits such as the IERC7540RedeemReceiver callback.

We consider either of the two approaches as valid alleviations to this exhibit given that the EIP-7540 is

not yet mature.

The code was updated to accommodate for EIP-7540, however, the standard itself underwent an update

in between the preliminary report and its revision.

As an example, the IERC7540::requestRedeem function definition denotes a receiver argument on

which the callback should be performed on instead of the _owner .

EIP-7540 integration should be revised based on the latest implementation of the standard as of 04-15-

2024, and as an extension to the aforementioned recommendation we advise the

As4626::requestDeposit concept to be revised as it implements a dangerous polyfill in which the

_receiver will expect state mutations as described in the EIP-7540 and this chapter in particular.

 _requestId = ++requestId;

 request.requestId = _requestId;

 request.shares = _shares;

 request.timestamp = block.timestamp;

 req.totalRedemption += _shares;

 if(_data.length != 0) {

 // the caller contract must return the bytes4 value "0x0102fde4"

 if(IERC7540RedeemReceiver(msg.sender).onERC7540RedeemReceived(_operator,

_owner, _requestId, _data) != 0x0102fde4)

 revert Unauthorized();

 }

 emit RedeemRequest(_owner, _operator, _owner, _shares);

}

SOL

617

618

619

620

621

622

623

624

625

626

627

628

629

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L572-L577
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540#request-lifecycle

The contract was refactored to achieve EIP-7540 compliancy solely in relation to redemption requests

due to size limitations the contract must abide by and the updates involved in the EIP-7540 standard

itself.

We observed that EIP-7540 compliancy is still not achieved in two significant areas that pertain to

redemption requests.

The first area of concern is the As4626::claimableRedeemRequest function and the fact that it does not

align with the relevant EIP-7540 implementation as described here. As such, integrators will be unable

to reliably invoke the As4626::claimableRedeemRequest function to assess the portion of funds that are

claimable for a particular _owner .

The other area of concern is the As4626::requestRedeem function implementation itself, and the fact that

it overwrites the previous _shares requested rather than incrementing them. Per the standard itself\:

Assumes control of shares from owner and submits a Request for asynchronous redeem . This

places the Request in Pending state, with a corresponding increase in pendingRedeemRequest for the

amount shares .

As the present mechanism will overwrite the previous request if done for the same receiver, it will not

behave per the standard and thus break compliancy.

We advise both deviancies to be alleviated so as to ensure the contract is and remains EIP-7540

compliant.

As an additional comment, the As4626::totalpendingWithdrawRequest function is mistyped and should

be corrected.

The Astrolab DAO team evaluated our follow-up review of the exhibit and proceeded with addressing the

three concerns raised within it.

Specifically, a As4626::claimableRedeemRequest polyfill was introduced that complies with the EIP-

7540 function signature, the As4626::totalpendingWithdrawRequest typographic mistake was

corrected, and the As4626::requestRedeem function was refactored to treat the input _shares as an

increment of the existing redeem request if it exists.

As all EIP-7540 related compatibility concerns have been addressed by the Astrolab DAO team, we

consider this exhibit fully alleviated.

Alleviation (cf5194da53):

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L771-L777
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540#claimableredeemrequest
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L771-L777
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540#requestredeem
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/cf5194da53ebf026da6c8efa74daada96719cc71/src/abstract/As4626.sol#L771-L777
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/AstrolabDAO/strats/blob/cf5194da53ebf026da6c8efa74daada96719cc71/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-7540

Type Severity Location

Logical Fault , ,

The As4626::requestRedeem function will permit a user to request a redemption to be fulfilled at a later

date. This request will reserve a portion of the available funds in the strategy and will cause a liquidation

to occur to satisfy it.

The flaw in the current implementation is that a redemption request does not reserve the underlying EIP-

20 balance, enabling a user to create multiple redemption requests with the same fungible EIP-20

balance across multiple accounts.

It is possible to cause the strategy to no longer operate by creating multiple redemption requests that

must be honoured by the system's liquidation mechanisms.

src/abstract/As4626.sol

A62-12M: Inexistent Reservation of Shares

As4626.sol:L591 L593 L619

Description:

Impact:

Example:

/**

 * @notice Initiate a redeem request for shares

 * @param _shares Amount of shares to redeem

 * @param _operator Address initiating the request

 * @param _owner The owner of the shares to be redeemed

 */

function requestRedeem(

 uint256 _shares,

 address _operator,

 address _owner,

SOL

579

580

581

582

583

584

585

586

587

588

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L591
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L593
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L619

Example (Cont.):

 bytes memory _data

) public nonReentrant whenNotPaused returns (uint256 _requestId) {

 if (_operator != msg.sender || (_owner != msg.sender && allowance(_owner,

_operator) < _shares))

 revert Unauthorized();

 if (_shares == 0 || balanceOf(_owner) < _shares)

 revert AmountTooLow(_shares);

 Erc7540Request storage request = req.byOwner[_owner];

 if (request.operator != _operator) request.operator = _operator;

 last.sharePrice = sharePrice();

 if (request.shares > 0) {

 if (request.shares > _shares)

 revert AmountTooLow(_shares);

 // reinit the request (re-added lower)

 req.totalRedemption -= AsMaths.min(

 req.totalRedemption,

 request.shares

);

 // compute request vwap

 request.sharePrice =

 ((last.sharePrice * (_shares - request.shares)) + (request.sharePrice

* request.shares)) /

 _shares;

 } else {

 request.sharePrice = last.sharePrice;

 }

SOL

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

Example (Cont.):

We advise the As4626::requestRedeem function to ensure that the _shares being submitted as part of

the request are correctly locked and to prevent their transfer or usage until the request is either cancelled

or fulfilled.

The code was updated to overload the ERC20::transfer function, however, the ERC20::transferFrom

function continues to permit shares meant for a request to be transferred.

The ERC20::transferFrom function has been overridden as well, ensuring that all EIP-20 transfer related

functions correctly impose the pending redemption request amount limitation.

 _requestId = ++requestId;

 request.requestId = _requestId;

 request.shares = _shares;

 request.timestamp = block.timestamp;

 req.totalRedemption += _shares;

 if(_data.length != 0) {

 // the caller contract must return the bytes4 value "0x0102fde4"

 if(IERC7540RedeemReceiver(msg.sender).onERC7540RedeemReceived(_operator,

_owner, _requestId, _data) != 0x0102fde4)

 revert Unauthorized();

 }

 emit RedeemRequest(_owner, _operator, _owner, _shares);

}

SOL

617

618

619

620

621

622

623

624

625

626

627

628

629

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L585-L629
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ERC20.sol#L179-L208
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ERC20.sol#L219-L267
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/ERC20.sol#L219-L267
https://eips.ethereum.org/EIPS/eip-20

As4626Abstract Manual Review Findings

Type Severity Location

Standard Conformity

The RedeemRequest event declaration within the As4626Abstract contract does not comply with the

specification of the EIP.

A severity of minor has been assigned as the incompatibility will solely affect off-chain consumers of

these events, however, it is imperative that the incompatibility is rectified.

src/abstract/As4626Abstract.sol

AAT-01M: EIP-7540 Incompatibility

As4626Abstract.sol:L40-L45

Description:

Impact:

Example:

// ERC7540

event RedeemRequest(

 address indexed sender,

 address indexed operator,

 address indexed owner,

 uint256 assets

);

SOL

39

40

41

42

43

44

45

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-7540#redeemrequest
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L40-L45

We advise the event arguments as well as names to be updated to comply with the EIP-7540 standard as

otherwise compatibility with it should not be advertised.

The event has been updated to become fully compliant with the latest EIP-7540 standard definition as of

04-15-2024, alleviating this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540

AsArrays Manual Review Findings

Type Severity Location

Logical Fault , ,

The AsArrays::ref , AsArrays::unref , and thereby AsArrays::slice (for the uint256[] data type) are

invalid implementations as they do not conform to the intricacies of the EVM's memory space.

Specifically, the AsArrays::slice function incorrectly assumes that an array pointer can be transformed

to a new array by shifting the pointer's value in 32 byte increments per the elements the user wishes to

skip. This is incorrect, as a valid array pointer will contain the array's length in the first 32 byte slot and the

elements after it, meaning that shifting the pointer will result in an array that has a length equal to the

begin - 1 element.

In turn, this will cause the data := ptr assignment in AsArrays::unref to produce an array with length

equal to self[begin - 1] containing all entries that fit within that length as well as corrupt memory data

due to an "overflow" of the allocated memory as a result of the overwritten array length should it exceed

the initial size.

On the other hand, the AsArrays::unref function will instantiate a data pointer with an array with a

specified size , however, the size will be overwritten by the ensuing assignment. This means that

whatever the expected size , the resulting data array will use the aforementioned self[begin - 1]

entry (or the actual size, if begin is 0) as the length and the local declaration will be immediately

discarded.

As a final note, the AsArrays::testRefUnref function is an ineffective test as it will not mutate the length

of the array nor will it skip any elements in which case the malfunctions we described do not surface.

Any AsArrays::slice operation will either result in corrupted data or transaction failure, either of which

can be considered of significant severity.

AAS-01M: Incorrect EVM Memory Assumptions

AsArrays.sol:L80-L89 L96-L106 L112-L121

Description:

Impact:

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L85-L89
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L112-L121
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L80-L89
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L112-L121

src/libs/AsArrays.sol

Example:

/**

 * @notice Returns a reference to the array

 * @param data array to be referenced

 * @return ptr reference of the array

 */

function ref(uint256[] memory data) internal pure returns (uint ptr) {

 assembly {

 ptr := data

 }

}

SOL

80

81

82

83

84

85

86

87

88

89

Example (Cont.):

/**

 * @notice Returns dereferrenced array (slice) starting at ptr and containing

size elements

 * @param ptr reference of the array

 * @return array of given size

 */

function unref(uint256 ptr, uint256 size) internal pure returns (uint256[]

memory) {

 uint256[] memory data = new uint256[](size);

 assembly {

 data := ptr

 // safer:

 // for { let i := 0 } lt(i, size) { i := add(i, 1) } {

 // mstore(add(data, add(0x20, mul(i, 0x20))), mload(add(ptr, mul(i,

0x20))))

 // }

 }

 return data;

}

/**

 * @notice Used to test memory pointers on the current evm

 * @return true - memory ok, false - memory error

 */

function testRefUnref() internal pure returns (bool) {

 uint256[] memory dt = new uint256[](3);

 for (uint i = 0; i < dt.length; i++) {

 dt[i] = i;

 }

 uint256 wptr = ref(dt);

SOL

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Example (Cont.):

 uint256[] memory data;

 data = unref(wptr, 3);

 return data.length == 3 && data[0] == 0 && data[1] == 1 && data[2] == 2;

}

/**

 * @notice Returns a slice of the array

 * @param self Storage array containing uint256 type variables

 * @param begin Index of the first element to include in the slice

 * @param end Index of the last element to include in the slice

 * @return slice of the array

 */

function slice(uint256[] memory self, uint256 begin, uint256 end) internal pure

returns (uint256[] memory) {

 require(begin < end && end <= self.length);

 return unref(ref(self) + begin * 0x20, end - begin);

}

SOL

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

We advise the overall approach to efficient array slicing to be revised as it is presently incorrect, causes

data corruptions as well as potential unhandled errors.

To note, slices of in-memory arrays can already be acquired using the slice syntax (i.e. arr[a:b]) for

calldata arrays and could be a viable replacement to a custom slice implementation.

The codebase was refactored with the AsArrays::unref implementation removed and the

AsArrays::slice implementation revised, however, the AsArrays::slice implementation remains

incorrect.

Specifically, it will copy less than the actual elements it is meant to due to calculating the end pointer as

add(src, length) instead of add(src, mul(length, 0x20)) thus causing the ensuing for loop to

terminate early.

In turn, this will lead to the array incorrectly yielding zeroed out entries instead of failing. We advise the

end pointer to be updated properly so as to fully alleviate this exhibit.

As a final note, both AsArrays::slice implementations incorrectly calculate the end pointer until which

the iteration should run.

The Astrolab DAO team evaluated the follow-up alleviation chapter of this exhibit and opted to omit the

functions from the contract entirely, rendering this exhibit alleviated by omission.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L96-L106
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsArrays.sol#L130-L133

Type Severity Location

Language Specific , ,

The referenced statements will write to the 0x60 memory pointer which is meant to represent the initial

value of dynamic memory arrays, thereby corrupting all future array instantiations.

Any invocation of the AsArrays::sum , AsArrays::max , or AsArrays::min functions will cause future

array instantiations to be corrupted.

src/libs/AsArrays.sol

AAS-02M: Incorrect Usage of Memory

AsArrays.sol:L24 L43 L64

Description:

Impact:

Example:

/**

 * @notice Returns the max value in an array.

 * @param self Storage array containing uint256 type variables

 * @return value The highest value in the array

 */

function max(uint256[] storage self) public view returns (uint256 value) {

 assembly {

 mstore(0x60, self.slot)

 value := sload(keccak256(0x60, 0x20))

SOL

36

37

38

39

40

41

42

43

44

45

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L22-L34
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L41-L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L62-L78
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L24
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L43
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L64

Example (Cont.):

 for {

 let i := 0

 } lt(i, sload(self.slot)) {

 i := add(i, 1)

 } {

 switch gt(sload(add(keccak256(0x60, 0x20), i)), value)

 case 1 {

 value := sload(add(keccak256(0x60, 0x20), i))

 }

 }

 }

}

SOL

46

47

48

49

50

51

52

53

54

55

56

57

We advise the code to utilize the self.slot directly or to properly reserve memory using the free

memory pointer at 0x80 .

The code was updated to load the free memory pointer at 0x40 , however, the actual free memory pointer

is not updated after its memory has been utilized which is incorrect.

For more details on how to securely utilize the free memory pointer, kindly consult the relevant Solidity

documentation resource.

The free memory pointer is updated correctly in all relevant instances, and is updated twice redundantly in

the AsArrays::sum function.

As the original issue has been alleviated properly, we consider this exhibit addressed despite the

inefficiency described.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://docs.soliditylang.org/en/latest/assembly.html#memory-management
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/libs/AsArrays.sol#L22-L34

AsCast Manual Review Findings

Type Severity Location

Input Sanitization

The AsCast::toAddress function will cast the input bytes32 variable to an address without validating

that the variable does not have any corrupt bits.

Dirty bits in the bytes32 variable will not affect the end-result of the casting operation but may affect

other contextual assumptions in the caller of the function.

src/libs/AsCast.sol

ACT-01M: Potentially Insecure Address Cast

AsCast.sol:L119-L121

Description:

Impact:

Example:

/**

 * @dev Converts a bytes32 value to an address.

 * @param b The bytes32 value to convert.

 * @return The converted address.

 */

function toAddress(bytes32 b) internal pure returns (address) {

 return address(uint160(uint256(b)));

}

SOL

114

115

116

117

118

119

120

121

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#input-sanitization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol#L119-L121
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsCast.sol#L119-L121

We advise the code to cast the uint256 representation of the bytes32 variable to a uint160 variable

safely (i.e. via AsCast::toUint160), ensuring that there are no dirty bits in the representation cast.

The code was updated to invoke the AsCast::toUint160 function as advised, ensuring that all address

casts are safely performed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsManageable Manual Review Findings

Type Severity Location

Logical Fault ,

The AsManageable::_checkRoleAcceptance function will return early if the role being accepted is the

KEEPER_ROLE , however, the pendingAcceptance entry will never have the KEEPER_ROLE as a role due to

the fact that the AsManageable::grantRole will configure it solely when the role is either the

DEFAULT_ADMIN_ROLE or the MANAGER_ROLE .

src/abstract/AsManageable.sol

AME-01M: Invalid Conditional Evaluation

AsManageable.sol:L86-L96 L172

Description:

Example:

/**

 * @notice Grant a role to an account

 *

 * @dev If the role is admin, the account will have to accept the role

 * The acceptance period will expire after TIMELOCK_PERIOD has passed

 */

function grantRole(

 bytes32 role,

 address account

)

SOL

70

71

72

73

74

75

76

77

78

79

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L168-L177
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L86-L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L172

Example (Cont.):

 public

 override

 onlyRole(getRoleAdmin(role))

{

 require(!hasRole(role, account));

 if (role == DEFAULT_ADMIN_ROLE || role == MANAGER_ROLE) {

 pendingAcceptance[account] = PendingAcceptance({

 // only get replaced if admin, managers can coexist

 replacing: role == DEFAULT_ADMIN_ROLE

 ? msg.sender

 : address(0),

 timestamp: block.timestamp,

 role: role

 });

 } else {

 _grantRole(role, account);

 }

}

SOL

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

We advise the code to be updated, potentially by adjusting the if conditional of the

AsManageable::grantRole function to also execute the pendingAcceptance path when the input role is

the KEEPER_ROLE .

The Astrolab DAO team indicated that they will address this point with an acceptable remediation,

however, it remains open in the latest version of the codebase and specifically the

AccessController::acceptRole function that implements the original contract's purpose.

As the exhibit does not pose a security concern, we will consider it acknowledged but advise the Astrolab

DAO team to potentially revisit it.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L309-L319

Type Severity Location

Logical Fault , ,

The AsManageable::acceptRole function will permit the caller to accept any role they wish regardless of

what was initially authorized to them via the AsManageable::grantRole function as the input role

argument is utilized instead of the acceptance.role data entry.

It is presently possible to acquire a different role than the one you have been authorized for (i.e. acquire

the DEFAULT_ADMIN_ROLE while authorized for the MANAGER_ROLE) as well as cause the deletion of the

DEFAULT_ADMIN_ROLE by accepting such an authorization whilst granting a different role.

src/abstract/AsManageable.sol

AME-02M: Detachment of Authorized Role

AsManageable.sol:L152 L158 L160

Description:

Impact:

Example:

/**

 * @notice Accept an admin role and revoke the old admin

 *

 * @dev If the role is admin or manager, the account will have to accept the role

 * The acceptance will expire after TIMELOCK_PERIOD + VALIDITY_PERIOD has passed

 * Old admin will be revoked and new admin will be granted

 */

function acceptRole(bytes32 role) external {

 PendingAcceptance memory acceptance = pendingAcceptance[msg.sender];

SOL

145

146

147

148

149

150

151

152

153

154

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L152-L162
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L76-L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L152
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L158
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L160

Example (Cont.):

 _checkRoleAcceptance(acceptance);

 if (acceptance.replacing != address(0)) {

 // if replacing, revoke the old role

 _revokeRole(acceptance.role, acceptance.replacing);

 }

 _grantRole(role, msg.sender);

 delete pendingAcceptance[msg.sender];

}

SOL

155

156

157

158

159

160

161

162

We advise the code to remove the role argument entirely, and to utilize the pendingAcceptance payload

for all the data it requires.

Role acceptance is properly validated in the AccessController::acceptRole function and specifically the

AccessController::checkRoleAcceptance validation mechanism which has replaced the original

AsManageable implementation.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L309-L319
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L149-L168

AsMaths Manual Review Findings

Type Severity Location

Mathematical Operations

The AsMaths::abs function is expected to yield the absolute value of the input int256 number in its

uint256 representation, however, in doing so the function will not properly handle the value

type(int256).min even though it is representable by the uint256 the conversion occurs to.

This is due to the fact that all signed integers have one less value in the positive range as a result of the

bit signifying the polarity of the number.

As the code would simply revert instead of yielding a corrupt value, we consider its severity to be

informational.

src/libs/AsMaths.sol

AMS-01M: Improper Absolute Function Implementation

AsMaths.sol:L248

Description:

Impact:

Example:

/**

 * @notice Get the absolute value of a signed integer

 * @param x The input signed integer

 * @return The absolute value of the input

 */

function abs(int256 x) internal pure returns (uint256) {

 return uint256(x > 0 ? x : -x);

}

SOL

242

243

244

245

246

247

248

249

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L247-L249
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L248

We advise a conditional to be introduced, ensuring that uint256(type(int256).max) + 1 is yielded if the

input x is equal to the type(int256).min value.

The case of x being equivalent to type(int256).min is now adequately handled by the AsMaths::abs

function, ensuring that the value is calculated safely for all possible inputs.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsMaths.sol#L247-L249

AsProxy Manual Review Findings

Type Severity Location

Standard Conformity , ,

Any Proxy implementation is meant to relay calls to its logic contract and should not implement any

functions of its own to avoid function signature clashes (i.e. a function signature being present in both the

Proxy and its logic implementation).

In such cases, the function signature in the Proxy implementation will take precedence preventing the

function from the logic contract from ever being invoked via it.

The probability of a function signature collision is low but not unlikely given that only 4 bytes are utilized

of the resulting function's hash. As such, it is advised that these implementations are instead present in

the logic contract to ensure that the proxy is a pass-through contract rather than one with logic within it.

src/abstract/AsProxy.sol

APY-01M: Reservation of Function Signatures

AsProxy.sol:L57 L65 L73

Description:

Impact:

Example:

/**

 * @notice Returns the proxy initialization state

 */

function initialized() public view virtual returns (bool) {

 return _implementation() != address(0);

}

/**

 * @dev Returns the EIP-897 address of the implementation contract

 * @return The address of the implementation contract

SOL

54

55

56

57

58

59

60

61

62

63

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L73

Example (Cont.):

 */

function implementation() external view virtual returns (address) {

 return _implementation();

}

/**

 * @dev Returns the EIP-897 proxy type

 * @return The proxy type

 */

function proxyType() external pure virtual returns (uint256) {

 return 2;

}

SOL

64

65

66

67

68

69

70

71

72

73

74

75

We advise the functions to be implemented by the logic implementation instead, ensuring that all function

signatures are properly forwarded to the logic contract.

The AsProxy implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla delegatecall integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Language Specific ,

The AsProxy::_delegateWithSignature function attempts to mimic the Proxy::_delegate

implementation by taking control over the full memory scratch space whose security relies entirely on the

way the function is invoked as well as the primitives that are used around its invocation.

A severity of minor has been assigned due to the fact that the top-level call that leads to the

AsProxy::_delegateWithSignature function's execution has been confirmed as being the final

statement in each code block.

In spite of this, we still advise proper memory reservation to occur as it represents a somewhat small gas

increase while significantly bolstering the security of these relayed calls.

src/abstract/AsProxy.sol

APY-02M: Potentially Insecure Utilization of Scratch Space

AsProxy.sol:L29 L31

Description:

Impact:

Example:

/**

 * @notice Delegate a call to an implementation contract using a function

signature

 * @param _implementation The address of the implementation contract

 * @param _signature The function signature to delegate

 */

function _delegateWithSignature(

 address _implementation,

 string memory _signature

) internal {

 bytes4 selector = bytes4(keccak256(bytes(_signature)));

SOL

17

18

19

20

21

22

23

24

25

26

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L29
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L31

Example (Cont.):

 assembly {

 // Store selector at the beginning of the calldata

 mstore(0x0, selector)

 // Copy the rest of calldata (skipping the first 4 bytes of the original

function signature)

 calldatacopy(0x4, 0x4, sub(calldatasize(), 0x4))

 let result := delegatecall(

 gas(),

 _implementation,

 0x0,

 calldatasize(),

 0,

 0

)

 let size := returndatasize()

 let ptr := mload(0x40)

 returndatacopy(ptr, 0, size)

 switch result

 case 0 {

 revert(ptr, size)

 }

 default {

 return(ptr, size)

 }

 }

}

SOL

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

We strongly advise against utilizing the scratch space based on the fact that the

AsProxy::_delegateWithSignature function is invoked within other functions, the usage of keccak256

prior to the assembly block which utilizes the scratch space itself, and the fact that the memory

required by the function is dynamic and reliant on the call-data of the top-level call.

The AsProxy implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla delegatecall integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html#layout-in-memory

Type Severity Location

Logical Fault

The AsProxy::_delegateWithSignature function will forward the payload attached to the transaction's

calldata to the selector associated with the input function _signature of the function.

Based on the way the AsProxy::_delegateWithSignature function is invoked within the codebase, the

relayed payload will be outright incorrect or contain superfluous data points in the following cases:

Any StrategyV5Chainlink::updateAsset / StrategyV5Pyth::updateAsset call will result in

misbehaviour as it will relay an improper _priceFactor which we consider a significant misbehaviour.

src/abstract/AsProxy.sol

APY-03M: Insecure Forwarded Payload

AsProxy.sol:L31

Description:

Impact:

Example:

/**

 * @notice Delegate a call to an implementation contract using a function

signature

 * @param _implementation The address of the implementation contract

 * @param _signature The function signature to delegate

 */

function _delegateWithSignature(

 address _implementation,

 string memory _signature

) internal {

 bytes4 selector = bytes4(keccak256(bytes(_signature)));

SOL

17

18

19

20

21

22

23

24

25

26

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L82-L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L86-L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L31

Example (Cont.):

 assembly {

 // Store selector at the beginning of the calldata

 mstore(0x0, selector)

 // Copy the rest of calldata (skipping the first 4 bytes of the original

function signature)

 calldatacopy(0x4, 0x4, sub(calldatasize(), 0x4))

 let result := delegatecall(

 gas(),

 _implementation,

 0x0,

 calldatasize(),

 0,

 0

)

 let size := returndatasize()

 let ptr := mload(0x40)

 returndatacopy(ptr, 0, size)

 switch result

 case 0 {

 revert(ptr, size)

 }

 default {

 return(ptr, size)

 }

 }

}

SOL

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

The flaw arises from the fact that the transaction's calldata is utilized, and the calldata remains the

same regardless of how many internal functions are invoked as only an external call can mutate the

calldata .

As the function is never used to actually forward a dynamic calldata based payload, we advise a

bytes memory argument to be introduced to the function that is in turn forwarded, ensuring that the data

the _implementation contract receives is accurate and expectable.

The AsProxy implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla delegatecall integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsSequentialSet Manual Review Findings

Type Severity Location

Logical Fault

The AsSequentialSet::shift operation will break the sequential nature of the set as it will replace the

first element with the last element of the set and then pop the first element from the end of the array,

thereby breaking its order.

src/libs/AsSequentialSet.sol

ASS-01M: Improper Sequential Set Shift Operation

AsSequentialSet.sol:L79-L87

Description:

Example:

/**

 * @dev Removes the first element from the sequential set.

 * @param q The sequential set.

 */

function shift(Set storage q) internal {

 if (q.data.length == 0) {

 revert EmptySet();

 }

 delete q.index[q.data[0]];

 q.data[0] = q.data[q.data.length - 1];

SOL

75

76

77

78

79

80

81

82

83

84

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87

Example (Cont.):

 q.index[q.data[0]] = 1;

 q.data.pop();

}

SOL

85

86

87

We advise this trait to be re-evaluated, as the set is no longer sequential via these operations.

The Astrolab DAO team evaluated this exhibit and clarified that the "Sequential" keyword is meant to refer

to memory allocation rather than how the elements are ordered. The team proceeded to rename the

library as AsIterableSet to better reflect this fact, addressing any confusion that the exhibit arose from.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Logical Fault , ,

The AsSequentialSet is inherently incompatible with duplicate entries due to its index system and would

cause a fatal corruption of the dataset if any such entry is added.

The AsSequentialSet as presently utilized will prevent this misbehaviour from manifesting, however, it is

crucial that the duplicate entry limitation is enforced at the library level to avoid this behaviour surfacing

as part of future development efforts.

src/libs/AsSequentialSet.sol

ASS-02M: Inexistent Prevention of Duplicate Elements

AsSequentialSet.sol:L37 L94 L111

Description:

Impact:

Example:

/**

 * @dev Adds an element to the end of the sequential set.

 * @param q The sequential set.

 * @param o The element to be added.

 */

function push(Set storage q, bytes32 o) internal {

 q.data.push(o);

 q.index[o] = uint32(q.data.length);

}

SOL

32

33

34

35

36

37

38

39

40

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L37
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L94
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L111

We advise the code to prevent duplicate entries by ensuring that the q.index of an entry being added is

0 .

While the AsIterableSet::push and AsIterableSet::insert functions have been updated to prevent

duplicates, the AsIterableSet::unshift function continues to permit them rendering this exhibit

partially alleviated.

A require check was introduced at the top of the AsIterableSet::unshift function that disallows

duplicate entries correctly, rendering this exhibit fully alleviated.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L145-L149
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L229-L250
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/libs/AsIterableSet.sol#L211-L222

Type Severity Location

Logical Fault

If the length of the set is 1 , the AsSequentialSet::shift operation will retain a non-zero q.index for

the entry being removed even though it is no longer present in the array.

When the last element of the array is shifted, the element will have a non-zero index even though it is no

longer present in the set which is invalid and would cause AsSequentialSet::has evaluations to yield

true after other elements are placed as well as incorrect behaviour if anyone attempts to remove it.

src/libs/AsSequentialSet.sol

ASS-03M: Invalid Sequential Set Shift Operation

AsSequentialSet.sol:L83-L86

Description:

Impact:

Example:

/**

 * @dev Removes the first element from the sequential set.

 * @param q The sequential set.

 */

function shift(Set storage q) internal {

 if (q.data.length == 0) {

 revert EmptySet();

 }

 delete q.index[q.data[0]];

 q.data[0] = q.data[q.data.length - 1];

SOL

75

76

77

78

79

80

81

82

83

84

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L79-L87
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L193-L195
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L83-L86

Example (Cont.):

 q.index[q.data[0]] = 1;

 q.data.pop();

}

SOL

85

86

87

We advise the code to instead delete the q.index of the last remaining element and simply pop it if

the q.data.length value is 1 , ensuring that the entries are correctly updated.

Our recommendation was adhered to, deleting the index of the last element (i.e. the only one in the array

s.data[0]) and issuing a pop operation to the s.data array.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Logical Fault

The AsSequentialSet::unshift function will overwrite the last element of the array if the

q.data.length is non-zero and will also not update its index, corrupting the sequential set.

Whenever an element is unshifted and the array is not empty, the last entry of the set will be removed

from the system while its index will yield a non-zero entry thereby causing AsSequentialSet::has

evaluations to yield true as well as incorrect behaviour if anyone attempts to remove it.

src/libs/AsSequentialSet.sol

ASS-04M: Invalid Sequential Set Unshift Operation

AsSequentialSet.sol:L98-L100

Description:

Impact:

Example:

/**

 * @dev Adds an element to the beginning of the sequential set.

 * @param q The sequential set.

 * @param o The element to be added.

 */

function unshift(Set storage q, bytes32 o) internal {

 if (q.data.length == 0) {

 q.data.push(o);

 } else {

 q.data[q.data.length - 1] = q.data[0];

SOL

89

90

91

92

93

94

95

96

97

98

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L94-L103
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L193-L195
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L98-L100

Example (Cont.):

 q.index[q.data[0]] = uint32(q.data.length);

 q.data[0] = o;

 }

 q.index[o] = 1;

}

SOL

99

100

101

102

103

We advise the code to instead push to the q.data array and perform the referenced statements

afterwards, ensuring that no data is overwritten from the sequential set and that all indexes are correct.

To note, this would also break the order of the sequential set as specified in a separate exhibit and an

alternative approach should be utilized if the order is expected to remain the same.

While the code was refactored to push and perform the relevant index updates, the s.index[o]

assignment of 1 was relocated within the else block of the AsIterableSet::unshift function which

causes an AsIterableSet::unshift operation on an empty s.data structure to not update the index of

the element added.

We advise the s.index[0] update to be relocated outside the if-else block as it was in the original

implementation, ensuring that the index of the unshifted o element is correctly maintained under all

scenarios.

The q.index assignment has been relocated outside the if-else clause per the original implementation,

addressing this exhibit in full.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/libs/AsIterableSet.sol#L211-L221

StrategyV5 Manual Review Findings

Type Severity Location

Logical Fault

The inline documentation of the referenced statement denotes that:

only invest 90% of liquidity for buffered flows

However, the full As4626Abstract::available amount is utilized for the investment preview.

The system is presently inefficient as no liquidation buffer is utilized and the documentation does not

match the implementation of the code.

src/abstract/StrategyV5.sol

SV5-01M: Implementation & Documentation Mismatch

StrategyV5.sol:L498

Description:

Impact:

Example:

/**

 * @dev Preview the amounts that would be invested based on the given amount

 * @param _amount Amount of asset to invest with

 * @return amounts uint256[8] Previewed investment amounts for each input in

asset

 */

function previewInvest(

 uint256 _amount

) public view returns (uint256[8] memory amounts) {

 if (_amount == 0)

 _amount = available(); // only invest 90% of liquidity for buffered flows

SOL

489

490

491

492

493

494

495

496

497

498

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L113-L118
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L498

Example (Cont.):

 int256[8] memory excessInput = _excessInputLiquidity(invested() + _amount);

 for (uint8 i = 0; i < inputLength; i++) {

 if (_amount < 10) break; // no leftover

 if (excessInput[i] < 0) {

 uint256 need = _inputToAsset(excessInput[i].abs(), i);

 if (need > _amount)

 need = _amount;

 amounts[i] = need;

 _amount -= need;

 }

 }

}

SOL

499

500

501

502

503

504

505

506

507

508

509

510

We advise the code to properly utilize only 90% of the As4626Abstract::available amount to ensure

that a buffer is permitted for potential liquidations that may occur.

The Astrolab DAO team evaluated this exhibit and identified that it represented a simple discrepancy

between the latest code implementation and the in-line documentation that accompanies it.

Specifically, the "90%" threshold can be imposed via inputWeights rendering a flat reduction

unnecessary and in reality inefficient in the latest system.

As such, we consider this exhibit as alleviated and have downgraded its severity to reflect a

documentational discrepancy.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L113-L118

Type Severity Location

Mathematical Operations , ,

The StrategyV5::previewLiquidate function will add the minimum between

totalPendingAssetRequest() + allocated.bp(150) and allocated to the input _amount , however, the

ensuing subtraction will fail if the _amount that results exceeds the allocated value.

As the StrategyV5::previewLiquidate function is solely utilized by off-chain software, the impact of this

flaw would solely translate to off-chain services and whether they handle revert errors of the

StrategyV5::previewLiquidate function or not.

src/abstract/StrategyV5.sol

SV5-02M: Discrepancy of Liquidation Preview

StrategyV5.sol:L471 L474 L476

Description:

Impact:

Example:

/**

 * @dev Preview the amounts that would be liquidated based on the given amount

 * @param _amount Amount of asset to liquidate with (0 ==

totalPendingAssetRequest() + allocated.bp(100))

 * @return amounts uint256[8] Previewed liquidation amounts for each input

 */

function previewLiquidate(

 uint256 _amount

) public view returns (uint256[8] memory amounts) {

 uint256 allocated = invested();

 _amount += AsMaths.min(totalPendingAssetRequest() + allocated.bp(150),

allocated); // defaults to requests + 1% offset to buffer flows

SOL

465

466

467

468

469

470

471

472

473

474

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L470-L487
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L471
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L476

Example (Cont.):

 // excessInput accounts for the weights and the cash available in the

strategy

 int256[8] memory excessInput = _excessInputLiquidity(allocated - _amount);

 for (uint8 i = 0; i < inputLength; i++) {

 if (_amount < 10) break; // no leftover

 if (excessInput[i] > 0) {

 uint256 need = _inputToAsset(excessInput[i].abs(), i);

 if (need > _amount)

 need = _amount;

 amounts[i] = _assetToInput(need, i);

 _amount -= need;

 }

 }

}

SOL

475

476

477

478

479

480

481

482

483

484

485

486

487

We advise the totalPendingAssetRequest() + allocated.bp(150) value to be added to the _amount

directly, and the _amount to be consequently assigned to the minimum between the calculated value and

the value of allocated ensuring that a subtraction overflow cannot occur.

Our recommendation has been applied to the letter, incrementing the _amount by the relevant buffer

(updated to 0.5% from 1.5% in the latest implementation) and then calculating the minimum between the

new _amount and the allocated value.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Mathematical Operations , , ,

The referenced operations will cast a uint256 variable to its signed representation (int256) without

proper bound checks.

Any cast-based overflow operation will not be properly detected by the Solidity version utilized,

potentially causing misbehaviours in the calculations referenced if the cast values manage to exceed the

maximum of an int256 .

src/abstract/StrategyV5.sol

SV5-03M: Insecure Casting Operations

StrategyV5.sol:L419 L420 L448 L449

Description:

Impact:

Example:

/**

 * @dev Calculate the excess weight for a given input index

 * @param _index Index of the input

 * @param _total Total invested amount

 * @return int256 Excess weight (/AsMaths.BP_BASIS)

 */

function _excessWeight(

 uint8 _index,

 uint256 _total

) internal view returns (int256) {

SOL

407

408

409

410

411

412

413

414

415

416

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#mathematical-operations
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L419
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L420
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L448
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L449

Example (Cont.):

 if (_total == 0) _total = invested();

 return

 int256(invested(_index).mulDiv(AsMaths.BP_BASIS, _total)) -

 int256(uint256(inputWeights[_index]));

}

SOL

417

418

419

420

421

We advise each cast to be performed safely, ensuring the value being cast is less-than the maximum

supported by the int256 data type (i.e. type(int256).max).

The Astrolab DAO team indicated that they plan to enforce safety checks for the relevant casting

operations in a future iteration of the codebase per the linked GitHub discussion.

As such, we consider this exhibit to be safely acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Agent Manual Review Findings

Type Severity Location

Logical Fault ,

The StrategyV5Agent::setSwapperAllowance function will ensure that a new swapper will be properly

authorized to swap the reward tokens of the contract, however, the StrategyV5Agent::setRewardTokens

function fails to do this thereby causing newly configured reward tokens to lack the necessary approval to

be utilized.

Configuration of new reward tokens will cause them to be inoperable by the swapper and would require

multiple actions for the swapper to be properly approved for them.

src/abstract/StrategyV5Agent.sol

SVA-01M: Discrepant Allowance Maintenance

StrategyV5Agent.sol:L53 L143-L144

Description:

Impact:

Example:

/**

 * @notice Sets the reward tokens

 * @param _rewardTokens array of reward tokens

 */

function setRewardTokens(

 address[] calldata _rewardTokens

) public onlyManager {

 if (_rewardTokens.length > 8) revert Unauthorized();

 for (uint8 i = 0; i < _rewardTokens.length; i++) {

 rewardTokens[i] = _rewardTokens[i];

SOL

134

135

136

137

138

139

140

141

142

143

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L45-L60
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L138-L147
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L53
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L143-L144

Example (Cont.):

 rewardTokenIndex[_rewardTokens[i]] = i+1;

 }

 rewardLength = uint8(_rewardTokens.length);

}

SOL

144

145

146

147

We advise the StrategyV5Agent::setRewardTokens function to properly set allowances, ensuring the

swapper can utilize them as necessary.

The StrategyV5Agent::_setRewardTokens function, representing an internalization of the original

StrategyV5Agent::setRewardTokens logic, was updated to properly supply approvals for the newly

configured reward tokens rendering this exhibit alleviated.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L138-L147
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5Agent.sol#L138-L147

Type Severity Location

Language Specific

The referenced statement will not result in any functional change to the code as it will evaluate a ternary

operator and not utilize the result.

The code is meant to treat a 0 value allowance as the maximum but presently ignores it.

src/abstract/StrategyV5Agent.sol

SVA-02M: Improper No-Op Logic Statement

StrategyV5Agent.sol:L49

Description:

Impact:

Example:

/**

 * @notice Sets the swapper allowance

 * @param _amount Amount of allowance to set

 */

function setSwapperAllowance(uint256 _amount) public onlyAdmin {

 address swapperAddress = address(swapper);

 // we keep the possibility to set allowance to 0 in case of a change of

swapper

 // default is to approve MAX_UINT256

 _amount != 0 ? _amount : MAX_UINT256;

SOL

41

42

43

44

45

46

47

48

49

50

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L49

Example (Cont.):

 for (uint256 i = 0; i < rewardLength; i++) {

 if (rewardTokens[i] == address(0)) break;

 IERC20Metadata(rewardTokens[i]).approve(swapperAddress, _amount);

 }

 for (uint256 i = 0; i < inputLength; i++) {

 if (address(inputs[i]) == address(0)) break;

 inputs[i].approve(swapperAddress, _amount);

 }

 asset.approve(swapperAddress, _amount);

}

SOL

51

52

53

54

55

56

57

58

59

60

We advise the behaviour of the StrategyV5Agent::setSwapperAllowance to be validated and the ternary

operator to either be removed or incorporated within it.

The code was updated to properly utilize the result of the ternary statement in an assignment to the

_amount variable, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L45-L60

Type Severity Location

Logical Fault , ,

The various functions of the StrategyV5Agent contract that permit the inputs, reward tokens, and

underlying asset to be adjusted do not erase the previously present approval to the swapper, permitting

lingering approvals to remain in the code.

Approvals that are a result of replaced assets will remain to the swapper even if it is replaced, signifying a

potential flaw in the system that can affect funds.

src/abstract/StrategyV5Agent.sol

SVA-03M: Inexistent Erasure of Previous Approvals

StrategyV5Agent.sol:L111 L126 L143

Description:

Impact:

Example:

/**

 * @notice Sets the input tokens (strategy internals), make sure to liquidate()

them first

 * @param _inputs array of input tokens

 * @param _weights array of input weights

 */

function setInputs(

 address[] calldata _inputs,

 uint16[] calldata _weights

) public onlyAdmin {

 if (_inputs.length > 8) revert Unauthorized();

SOL

114

115

116

117

118

119

120

121

122

123

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L143

Example (Cont.):

 address swapperAddress = address(swapper);

 for (uint8 i = 0; i < _inputs.length; i++) {

 inputs[i] = IERC20Metadata(_inputs[i]);

 inputDecimals[i] = inputs[i].decimals();

 inputWeights[i] = _weights[i];

 inputs[i].approve(swapperAddress, MAX_UINT256);

 }

 inputLength = uint8(_inputs.length);

}

/**

 * @notice Sets the reward tokens

 * @param _rewardTokens array of reward tokens

 */

function setRewardTokens(

 address[] calldata _rewardTokens

) public onlyManager {

 if (_rewardTokens.length > 8) revert Unauthorized();

 for (uint8 i = 0; i < _rewardTokens.length; i++) {

 rewardTokens[i] = _rewardTokens[i];

 rewardTokenIndex[_rewardTokens[i]] = i+1;

 }

 rewardLength = uint8(_rewardTokens.length);

}

SOL

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

We advise the code to properly erase any approval that previously existed, ensuring that no lingering

approvals to potentially unauthorized swappers remain.

To note, the input and reward token configuration functions will also need to iterate up to the end of the

inputs / rewardTokens array respectively to ensure a shrink of the array will also cause approvals to be

erased.

The StrategyV5Agent::_setInputs and StrategyV5Agent::_setRewardTokens functions, both

representing internalized implementations of their original public un-prefixed counterparts, have been

updated to erase any previously existing approval when tokens are updated effectively alleviating this

exhibit in full.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Logical Fault

The StrategyV5Agent::init function does not prevent against re-initialization, permitting the asset to be

updated without the proper flow defined in StrategyV5Agent::updateAsset .

A severity of minor has been assigned as the function is privileged, however, its impact is significant as

the asset's immediate adjustment without a proper migration can cause the strategy to misbehave greatly.

src/abstract/StrategyV5Agent.sol

SVA-04M: Inexistent Protection Against Re-Initialization

StrategyV5Agent.sol:L31-L39

Description:

Impact:

Example:

/**

 * @notice Initialize the strategy

 * @param _params StrategyBaseParams struct containing strategy parameters

 */

function init(StrategyBaseParams calldata _params) public onlyAdmin {

 // setInputs(_params.inputs, _params.inputWeights);

 setRewardTokens(_params.rewardTokens);

 asset = IERC20Metadata(_params.coreAddresses.asset);

 assetDecimals = asset.decimals();

 weiPerAsset = 10**assetDecimals;

SOL

27

28

29

30

31

32

33

34

35

36

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L81-L112
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39

Example (Cont.):

 updateSwapper(_params.coreAddresses.swapper);

 As4626.init(_params.erc20Metadata, _params.coreAddresses, _params.fees);

}

SOL

37

38

39

We advise the function to prevent re-invocation via a dedicated variable, ensuring the contract cannot be

re-initialized.

The Astrolab DAO team specified that they intend to supply an initialized public bool that will prevent

re-initialization, however, no such change has been incorporated in the codebase yet.

As such, we consider this exhibit open in the codebase's current state.

Initialization protection has been introduced to the As4626::_init function, rendering this exhibit

alleviated as a result.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

Type Severity Location

Logical Fault , , ,

The referenced approval operations may fail if the underlying token prevents approval reconfigurations

when a non-zero approval exists.

Presently, a reconfiguration of the inputs of the StrategyV5Agent may fail due to one of the tokens being

present in both the old and new inputs and thus causing the approval to fail.

src/abstract/StrategyV5Agent.sol

SVA-05M: Insecure Approval Operations

StrategyV5Agent.sol:L53 L57 L111 L129

Description:

Impact:

Example:

/**

 * @notice Sets the input tokens (strategy internals), make sure to liquidate()

them first

 * @param _inputs array of input tokens

 * @param _weights array of input weights

 */

function setInputs(

 address[] calldata _inputs,

 uint16[] calldata _weights

) public onlyAdmin {

 if (_inputs.length > 8) revert Unauthorized();

SOL

114

115

116

117

118

119

120

121

122

123

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L53
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L111
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L129

Example (Cont.):

 address swapperAddress = address(swapper);

 for (uint8 i = 0; i < _inputs.length; i++) {

 inputs[i] = IERC20Metadata(_inputs[i]);

 inputDecimals[i] = inputs[i].decimals();

 inputWeights[i] = _weights[i];

 inputs[i].approve(swapperAddress, MAX_UINT256);

 }

 inputLength = uint8(_inputs.length);

}

SOL

124

125

126

127

128

129

130

131

132

We advise usage of OpenZeppelin's SafeERC20 library and specifically its SafeERC20::forceApprove

function, ensuring that approval overwrites are correctly performed.

All IERC20::approve instances have been replaced by OpenZeppelin's SafeERC20::forceApprove

function, ensuring that they will be performed properly regardless of the underlying allowance's state

thereby alleviating this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Chainlink Manual Review Findings

Type Severity Location

Input Sanitization

The StrategyV5Chainlink::setPriceFeed function does not ensure that no previous entry exists for

either the _address or _feed , allowing corruption of their respective data entries in the system.

A severity of minor has been assigned due to the function's privileged nature.

src/abstract/StrategyV5Chainlink.sol

SVC-01M: Inexistent Prevention of Data Corruption

StrategyV5Chainlink.sol:L55-L59

Description:

Impact:

Example:

/**

 * @dev Sets the validity duration for a single price feed

 * @param _address The address of the token we want the feed for

 * @param _feed The pricefeed address for the token

 * @param _validity The new validity duration in seconds

 */

function setPriceFeed(address _address, IChainlinkAggregatorV3 _feed, uint256

_validity) public onlyAdmin {

 feedByAsset[_address] = _feed;

 decimalsByFeed[_feed] = feedByAsset[_address].decimals();

 validityByFeed[feedByAsset[_address]] = _validity;

SOL

49

50

51

52

53

54

55

56

57

58

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#input-sanitization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59

Example (Cont.):

}

SOL

59

We advise the StrategyV5Chainlink::setPriceFeed function to ensure that the

feedByAsset[_address] entry is zero, and to utilize a different variable to track whether the _feed has

been configured to be validated as such.

The Astrolab DAO team evaluated this exhibit and has opted to purposefully not validate whether a pre-

existing feed exists in the relocated ChainlinkProvider::_setFeed function as they wish to be able to

set temporary "identity" feeds for bridged assets when proper feeds are not present.

As such, we consider this exhibit alleviated based on the fact that the Astrolab DAO team will

responsibly employ the data feed configurations.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L55-L59
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L111-L116

Type Severity Location

Logical Fault ,

In direct contradiction with the ChainlinkUtils::getPriceUsd function, the referenced Chainlink queries

do not ensure the yielded price is positive.

The likelihood of a Chainlink oracle misbehaving is considered low, however, validation of the yielded

price should always be performed as a fail-safe.

src/abstract/StrategyV5Chainlink.sol

SVC-02M: Inexistent Validation of Prices

StrategyV5Chainlink.sol:L178 L199

Description:

Impact:

Example:

function _usdToInput(

 uint256 _amount,

 uint8 _index

) internal view returns (uint256) {

 IChainlinkAggregatorV3 feed = feedByAsset[address(inputs[_index])];

 (, int256 price, , uint256 updateTime,) = feed.latestRoundData();

 if (block.timestamp > (updateTime + validityByFeed[feed]))

 revert InvalidOrStaleValue(updateTime, price);

 return

 _amount.mulDiv(

SOL

173

174

175

176

177

178

179

180

181

182

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#logical-fault
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L22-L31
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L178
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L199

Example (Cont.):

 10 ** (uint256(decimalsByFeed[feed]) + inputDecimals[_index] - 6),

 uint256(price)

); // eg. (1e6+1e8+1e6)-(1e8+1e6) = 1e6

}

SOL

183

184

185

186

We advise such validation to be introduced, preventing invalid prices from being consumed as acceptable

by the system.

The StrategyV5Chainlink implementation has been superseded by the ChainlinkProvider

implementation, and the relevant statement is now located in the ChainlinkProvider::_toUsdBp

function.

A validity check for the reported price has been introduced in the relocated code, properly alleviating this

exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L66-L90

As4626 Code Style Findings

Type Severity Location

Gas Optimization ,

The linked statements perform key-based lookup operations on mapping declarations from storage

multiple times for the same key redundantly.

src/abstract/As4626.sol

A62-01C: Inefficient mapping Lookups

As4626.sol:L166 L182

Description:

Example:

Erc7540Request storage request = req.byOwner[_owner];

uint256 claimable = claimableRedeemRequest(_owner);

last.sharePrice = sharePrice();

uint256 price = (claimable >= _shares)

 ? AsMaths.min(last.sharePrice, request.sharePrice) // worst of if pre-

existing request

 : last.sharePrice; // current price

// amount/shares cannot be higher than the share price (dictated by the inline

convertToAssets below)

if (_amount > _shares.mulDiv(price * weiPerAsset, weiPerShare ** 2))

SOL

166

167

168

169

170

171

172

173

174

175

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L166
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L182

Example (Cont.):

 revert AmountTooHigh(_amount);

if (msg.sender != _owner)

 _spendAllowance(_owner, msg.sender, _shares);

if (claimable >= _shares) {

 req.byOwner[_owner].shares -= _shares;

 req.totalRedemption -= AsMaths.min(_shares, req.totalRedemption); // min 0

 req.totalClaimableRedemption -= AsMaths.min(

 _shares,

 req.totalClaimableRedemption

); // min 0

} else {

SOL

176

177

178

179

180

181

182

183

184

185

186

187

188

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the mapping in case of

primitive types or holds a storage pointer to the struct contained.

The optimization has been applied per our recommendation, using the request storage pointer that

already exists for the shares member mutation in the second highlighted line.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style

The referenced statement will locally perform the statements of the As4626::previewDeposit function

redundantly.

src/abstract/As4626.sol

A62-02C: Redundant Duplication of Code

As4626.sol:L146

Description:

Example:

shares = _deposit(_amount, convertToShares(_amount,

false).subBp(exemptionList[_receiver] ? 0 : fees.entry), _receiver);

SOL

146

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L472-L474
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L146

We advise the function to be invoked directly, optimizing the legibility of the code.

The referenced statements are no longer part of the As4626::safeDeposit function, rendering this

exhibit no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/As4626.sol#L141-L148

Type Severity Location

Code Style ,

The referenced statements are redundantly wrapped in parenthesis' (()).

src/abstract/As4626.sol

A62-03C: Redundant Parenthesis Statements

As4626.sol:L170 L801

Description:

Example:

uint256 price = (claimable >= _shares)

SOL

170

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L170
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L801

We advise them to be safely omitted, increasing the legibility of the codebase.

The first of the two referenced instances is no longer applicable whilst the second instance has been

corrected in its updated form rendering this exhibit fully addressed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style , , ,

The linked value literal is repeated across the codebase multiple times.

src/abstract/As4626.sol

A62-04C: Repetitive Value Literal

As4626.sol:L96 L175 L190 L200

Description:

Example:

if (_amount > maxDeposit(address(0)) || _shares > _amount.mulDiv(weiPerShare ** 2,

last.sharePrice * weiPerAsset))

SOL

96

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L96
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L175
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L190
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626.sol#L200

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

All referenced instances of weiPerShare ** 2 have been replaced by a _WEI_PER_SHARE_SQUARED

constant per our recommendation, optimizing the code's legibility.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

As4626Abstract Code Style Findings

Type Severity Location

Code Style , , , , , , , , ,

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

src/abstract/As4626Abstract.sol

AAT-01C: Generic Typographic Mistakes

As4626Abstract.sol:L61 L63 L66 L69 L70 L71 L75 L82 L83 L86

Description:

Example:

uint256 internal constant MAX_UINT256 = type(uint256).max;

SOL

61

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L61
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L63
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L66
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L69
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L70
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L71
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L75
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L82
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L83
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L86

We advise them to be corrected enhancing the legibility of the codebase.

All referenced declarations have been appropriately prefixed with an underscore when necessary,

addressing this exhibit in full.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Standard Conformity

The As4626Abstract::invested function is meant to be virtual and implemented by derivative

implementations, however, an empty declaration is present that would permit it to be invoked and yield 0

if it is not overridden.

src/abstract/As4626Abstract.sol

AAT-02C: Improper Declaration of Abstract Function

As4626Abstract.sol:L107

Description:

Example:

/**

 * @notice Total amount of inputs denominated in asset

 * @dev Abstract function to be implemented by the strategy

 * @return Amount of assets

 */

function invested() public view virtual returns (uint256) {}

SOL

102

103

104

105

106

107

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L107-L107
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/As4626Abstract.sol#L107

We advise the function to be declared without a code block ({}) to ensure it is overridden by derivative

implementations.

The referenced function was adjusted in visibility and renamed to As4626Abstract::_invested ,

incorporating our recommendation by no longer specifying an empty code block.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsAccessControl Code Style Findings

Type Severity Location

Gas Optimization , ,

In the referenced instances, the _roles[role] lookup will be redundantly performed multiple times due

to using utility functions that also fetch its storage location.

src/abstract/AsAccessControl.sol

AAC-01C: Inefficient Usage of Utility Functions

AsAccessControl.sol:L126 L137 L149

Description:

Example:

/**

 * @dev Internal function to revoke a role from an account.

 * @param role The role to revoke.

 * @param account The account to revoke the role from.

 */

function _revokeRole(bytes32 role, address account) internal virtual {

 if (hasRole(role, account)) {

 _roles[role].members.remove(account.toBytes32());

 emit RoleRevoked(role, account, msg.sender);

 }

SOL

143

144

145

146

147

148

149

150

151

152

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L137
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L149

Example (Cont.):

}

SOL

153

We advise the function invocations to be replaced by their statements directly, caching the result of

_roles[role] to a local RoleState storage variable that can be re-used and thus optimize the gas cost

of the functions.

The AsAccessControl implementation has been sunset by the standalone AccessController

implementation which incorporates a significant portion of the original code.

The ported implementations of AccessController::_setRoleAdmin , AccessController::_grantRole ,

and AccessController::_revokeRole properly incorporate the optimization outlined by no longer

utilizing utility functions.

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L220-L224
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L231-L238
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L245-L252

Type Severity Location

Gas Optimization

THe AsAccessControl::renounceRole function will accept an input argument that will always be

mandated as equal to the msg.sender .

src/abstract/AsAccessControl.sol

AAC-02C: Redundant Input Argument

AsAccessControl.sol:L106

Description:

Example:

/**

 * @dev Renounce a role for the sender account.

 * @param role The role to renounce.

 * @param account The account renouncing the role.

 */

function renounceRole(bytes32 role, address account) external virtual {

 if (account != msg.sender) revert Unauthorized();

 _revokeRole(role, account);

}

SOL

101

102

103

104

105

106

107

108

109

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L106-L109
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L106

We advise the referenced input argument to be omitted, ensuring that a role renunciation only requires the

role that is being renounced.

The AsAccessControl implementation has been sunset by the standalone AccessController

implementation which incorporates a significant portion of the original code.

The ported implementation of AccessController::renounceRole incorporates our recommendation to

omit the input argument and replacing it with direct use of the msg.sender .

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L258-L261

Type Severity Location

Gas Optimization

The referenced statement will declare a previousAdminRole local variable that is solely utilized once

within the code block.

src/abstract/AsAccessControl.sol

AAC-03C: Redundant Local Variable

AsAccessControl.sol:L126

Description:

Example:

/**

 * @dev Internal function to set the admin role for a given role.

 * @param role The role to set the admin role of.

 * @param adminRole The admin role to be set.

 */

function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {

 bytes32 previousAdminRole = getRoleAdmin(role);

 _roles[role].adminRole = adminRole;

 emit RoleAdminChanged(role, previousAdminRole, adminRole);

}

SOL

120

121

122

123

124

125

126

127

128

129

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L126

Example (Cont.):

/**

 * @dev Internal function to grant a role to an account.

 * @param role The role to grant.

 * @param account The account to grant the role to.

 */

function _grantRole(bytes32 role, address account) internal virtual {

 if (!hasRole(role, account)) {

 _roles[role].members.push(account.toBytes32());

 emit RoleGranted(role, account, msg.sender);

SOL

130

131

132

133

134

135

136

137

138

139

We advise the AsAccessControl::getRoleAdmin evaluation to be directly utilized as input to the

RoleAdminChanged event, and the event's emission to be relocated prior to the _roles data entry's

adjustment.

The AsAccessControl implementation has been sunset by the standalone AccessController

implementation which incorporates a significant portion of the original code.

The ported implementation of AccessController::_setRoleAdmin properly applies our recommended

optimization by emitting the RoleAdminChanged event before mutating the role.adminRole data entry.

As a result, we consider this exhibit alleviated in the implementation that supersedes the original.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsAccessControl.sol#L79-L81
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L220-L224

AsAccounting Code Style Findings

Type Severity Location

Code Style , ,

The linked value literal is repeated across the codebase multiple times.

src/libs/AsAccounting.sol

AAG-01C: Repetitive Value Literal

AsAccounting.sol:L126 L127 L128

Description:

Example:

_fees.entry <= 200 && // 2%

SOL

126

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L126
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L127
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsAccounting.sol#L128

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

Proper constant declarations have been introduced for all relevant maximum fee limitations inclusive of

the ones referenced by this exhibit, thereby addressing it in full.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsArrays Code Style Findings

Type Severity Location

Language Specific

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/libs/AsArrays.sol

AAS-01C: Ineffectual Usage of Safe Arithmetics

AsArrays.sol:L149

Description:

Example:

require(begin < end && end <= self.length);

// Calculate the number of elements in the slice

uint256 sliceLength = end - begin;

SOL

146

147

148

149

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L149

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The referenced statement is no longer present in the codebase in any shape or form rendering this exhibit

inapplicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization ,

The referenced loops will iterate from 0 to identify the maximum and minimum respectively, however,

their value entries are already initialized with the first entry of the array.

src/libs/AsArrays.sol

AAS-02C: Inefficient Iteration of Search Loops

AsArrays.sol:L47 L68

Description:

Example:

/**

 * @notice Returns the max value in an array.

 * @param self Storage array containing uint256 type variables

 * @return value The highest value in the array

 */

function max(uint256[] storage self) public view returns (uint256 value) {

 assembly {

 mstore(0x60, self.slot)

 value := sload(keccak256(0x60, 0x20))

SOL

36

37

38

39

40

41

42

43

44

45

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L47
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L68

Example (Cont.):

 for {

 let i := 0

 } lt(i, sload(self.slot)) {

 i := add(i, 1)

 } {

 switch gt(sload(add(keccak256(0x60, 0x20), i)), value)

 case 1 {

 value := sload(add(keccak256(0x60, 0x20), i))

 }

 }

 }

}

/// @notice Returns the minimum value in an array.

/// @param self Storage array containing uint256 type variables

/// @return value The highest value in the array

function min(uint256[] storage self) public view returns (uint256 value) {

 assembly {

 mstore(0x60, self.slot)

 value := sload(keccak256(0x60, 0x20))

 for {

 let i := 0

 } lt(i, sload(self.slot)) {

 i := add(i, 1)

 } {

 switch gt(sload(add(keccak256(0x60, 0x20), i)), value)

 case 0 {

SOL

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Example (Cont.):

 value := sload(add(keccak256(0x60, 0x20), i))

 }

 }

 }

}

SOL

74

75

76

77

78

We advise the loops to begin at 1 , optimizing each function's gas cost by one iteration.

Both loops will now begin iteration at the 1 index, optimizing their gas cost by one iteration.

Recommendation:

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

Type Severity Location

Gas Optimization , ,

The referenced for loops utilize a uint64 variable as an iterator which is inefficient.

src/libs/AsArrays.sol

AAS-03C: Inefficient Iterator Type

AsArrays.sol:L169 L173 L177

Description:

Example:

arr = new uint8[](n); for (uint64 i = 0; i < n; i++) arr[i] = a;

SOL

169

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L169
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L177

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped

to uint256 , optimizing their gas cost.

All referenced iterators have been updated to the uint256 data type, optimizing the codebase as

advised.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style ,

The linked require checks have no error messages explicitly defined.

src/libs/AsArrays.sol

AAS-04C: Inexistent Error Messages

AsArrays.sol:L131 L146

Description:

Example:

require(begin < end && end <= self.length);

SOL

131

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L131
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L146

We advise each to be set so to increase the legibility of the codebase and aid in validating the require

checks' conditions.

In-line documentation was introduced to clarify what the error is. Given that the contracts of the Astrolab

DAO codebase tread closely to the bytecode size limit, we consider this approach as an adequate

alleviation.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization , , , ,

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post- 0.8.X).

src/libs/AsArrays.sol

AAS-05C: Loop Iterator Optimizations

AsArrays.sol:L114 L155 L169 L173 L177

Description:

Example:

for (uint i = 0; i < dt.length; i++) {

SOL

114

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L155
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L169
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsArrays.sol#L177

We advise the increment / decrement operations to be performed in an unchecked code block as the last

statement within each for loop to optimize their execution cost.

The referenced loop iterator increment statements have been relocated at the end of each respective for

loop's body and have been unwrapped in an unchecked code block, optimizing their gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsManageable Code Style Findings

Type Severity Location

Code Style ,

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

src/abstract/AsManageable.sol

AME-01C: Generic Typographic Mistakes

AsManageable.sol:L30 L31

Description:

Example:

uint256 private constant TIMELOCK_PERIOD = 2 days;

SOL

30

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L30
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L31

We advise them to be corrected enhancing the legibility of the codebase.

The referenced variables have been renamed and their visibility specifier has been adjusted to public ,

effectively addressing this exhibit as the names are now correctly not prefixed with an underscore.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style

The linked require check has no error message explicitly defined.

src/abstract/AsManageable.sol

AME-02C: Inexistent Error Message

AsManageable.sol:L84

Description:

Example:

require(!hasRole(role, account));

SOL

84

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L84

We advise one to be set so to increase the legibility of the codebase and aid in validating the require

check's condition.

The require check remains without an explicit error message or in-line documentation justifying it in its

relocated AccessController::grantRole location, rendering the exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/AccessController.sol#L269-L286

Type Severity Location

Code Style , ,

The referenced statements are redundantly wrapped in parenthesis' (()).

src/abstract/AsManageable.sol

AME-03C: Redundant Parenthesis Statements

AsManageable.sol:L140 L173 L175

Description:

Example:

if ((role == DEFAULT_ADMIN_ROLE) && account == msg.sender)

SOL

140

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L140
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L173
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L175

We advise them to be safely omitted, increasing the legibility of the codebase.

The first of the three referenced redundant parenthesis statements is no longer present in the codebase

whilst the latter two could be justified as a legibility increase, rendering this exhibit ultimately alleviated.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsMaths Code Style Findings

Type Severity Location

Code Style , ,

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

src/libs/AsMaths.sol

AMS-01C: Generic Typographic Mistakes

AsMaths.sol:L22 L23 L24

Description:

Example:

uint256 internal constant BP_BASIS = 10_000; // 50% == 5_000 == 5e3

SOL

22

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L22
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L23
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L24

We advise them to be corrected enhancing the legibility of the codebase.

The referenced variables remain without an underscore prefix despite their internal visibility

specification, rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Language Specific

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/libs/AsMaths.sol

AMS-02C: Ineffectual Usage of Safe Arithmetics

AsMaths.sol:L149

Description:

Example:

return a > b ? a - b : b - a;

SOL

149

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L149

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The referenced subtractions have been wrapped in an unchecked code block, optimizing their gas cost.

Recommendation:

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

Type Severity Location

Code Style ,

The linked require checks have no error messages explicitly defined.

src/libs/AsMaths.sol

AMS-03C: Inexistent Error Messages

AsMaths.sol:L514 L862

Description:

Example:

require(denominator > prod1);

SOL

514

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L514
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L862

We advise each to be set so to increase the legibility of the codebase and aid in validating the require

checks' conditions.

While the former of the two require checks is accompanied by descriptive in-line documentation, the

latter is not thus rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style , , , , , , ,

The referenced statements are redundantly wrapped in parenthesis' (()).

src/libs/AsMaths.sol

AMS-04C: Redundant Parenthesis Statements

AsMaths.sol:L129 L160 L257 L266 L270 L274 L278 L282

Description:

Example:

return (diff(a, b) <= val);

SOL

129

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L129
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L160
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L257
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L266
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L270
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L274
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L278
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsMaths.sol#L282

We advise them to be safely omitted, increasing the legibility of the codebase.

The redundant parenthesis in the referenced statements have been safely omitted.

Recommendation:

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

AsProxy Code Style Findings

Type Severity Location

Gas Optimization

The AsProxy::_delegateWithSignature function will calculate the function selector locally from an input

string which is significantly inefficient.

src/abstract/AsProxy.sol

APY-01C: Inefficient Generation of Selector

AsProxy.sol:L26

Description:

Example:

/**

 * @notice Delegate a call to an implementation contract using a function

signature

 * @param _implementation The address of the implementation contract

 * @param _signature The function signature to delegate

 */

function _delegateWithSignature(

 address _implementation,

 string memory _signature

) internal {

 bytes4 selector = bytes4(keccak256(bytes(_signature)));

SOL

17

18

19

20

21

22

23

24

25

26

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L26

Given that the function signatures invoked are known at compile-time, we advise interface declarations

for them to be utilized and specifically the selector syntax.

The AsProxy::_delegateWithSignature function is invoked with the StrategyV5Agent::init ,

StrategyV5Agent::updateAsset , and StrategyV5Abstract::setInputs functions all of which can

become part of an interface (i.e. IStrategyV5Agent) and accessed as advised (i.e.

IStrategyV5Agent.init.selector).

The AsProxy implementation was removed from the codebase after consideration of the audit report's

outputs and its usage has been replaced by vanilla delegatecall integrations.

As such, all exhibits relevant to it have been marked as no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsProxy.sol#L22-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L31-L39
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L81-L112

AsRescuable Code Style Findings

Type Severity Location

Standard Conformity ,

The AsRescuable::requestRescue and AsRescuable::rescue functions are meant to be virtual and

implemented by derivative implementations, however, an empty declaration is present in both that would

permit each to be invoked.

src/abstract/AsRescuable.sol

ARE-01C: Improper Declarations of Abstract Functions

AsRescuable.sol:L65 L98

Description:

Example:

// to be overriden with the proper access control by inheriting contracts

function requestRescue(address _token) external virtual {}

SOL

64

65

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L65-L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L98-L98
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L65
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L98

We advise the functions to be declared without a code block ({}) to ensure they are overridden by

derivative implementations.

Both functions are now fully implemented by the AsRescuable implementation directly, rendering this

exhibit no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization ,

The AsRescuable::_rescue function will erase the rescueRequests entry after the token has been

transferred but will mark its timestamp as 0 before to prevent re-entrancies.

src/abstract/AsRescuable.sol

ARE-02C: Inefficient Erasure of Request

AsRescuable.sol:L83-L84 L92-L93

Description:

Example:

/**

 * @dev Internal function to rescue tokens or native tokens (ETH) from the

contract.

 * @param _token The address of the token to be rescued. Use address(1) for

native tokens (ETH).

 * @notice This function can only be called by the receiver specified in the

rescue request.

 * @notice The rescue request must be initiated before the rescue timelock

expires.

 * @notice The rescue request remains valid until the rescue validity period

expires.

 * @notice If the rescue request is valid, the specified amount of tokens will be

transferred to the receiver.

 * @notice If the rescue request is not valid, a new rescue request will be set

with the caller as the receiver.

 * @notice Emits a Rescue event when the rescue is successful.

 * @notice Emits a Rescue event when a new rescue request is set.

SOL

67

68

69

70

71

72

73

74

75

76

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L78-L95
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L83-L84
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L92-L93

Example (Cont.):

 */

function _rescue(address _token) internal {

 RescueRequest storage req = rescueRequests[_token];

 // check if rescue is pending

 require(_isRescueUnlocked(req));

 // reset timestamp to prevent reentrancy

 rescueRequests[_token].timestamp = 0;

 // send to receiver

 if (_token == address(1)) {

 payable(req.receiver).transfer(address(this).balance);

 } else {

 IERC20Metadata(_token).safeTransfer(req.receiver,

IERC20Metadata(_token).balanceOf(address(this)));

 }

 // reset pending request

 delete rescueRequests[_token];

 // emit Rescue(_token, req.receiver, block.timestamp);

}

SOL

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

As the rescueRequests entry is not utilized beyond the AsRescuable::_isRescueUnlocked validation, we

advise the entry to be deleted immediately after validation, optimizing the code's gas cost.

The inefficiency has been addressed by issuing the delete operation in place of the timestamp erasure

statement, optimizing the code's gas cost.

Recommendation:

Alleviation (cf5194da53ebf026da6c8efa74daada96719cc71):

https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L47-L49

Type Severity Location

Gas Optimization ,

The linked statements perform key-based lookup operations on mapping declarations from storage

multiple times for the same key redundantly.

src/abstract/AsRescuable.sol

ARE-03C: Inefficient mapping Lookups

AsRescuable.sol:L79 L84

Description:

Example:

RescueRequest storage req = rescueRequests[_token];

// check if rescue is pending

require(_isRescueUnlocked(req));

// reset timestamp to prevent reentrancy

rescueRequests[_token].timestamp = 0;

SOL

79

80

81

82

83

84

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L79
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L84

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached

wherever possible to a single local declaration that either holds the value of the mapping in case of

primitive types or holds a storage pointer to the struct contained.

The second highlighted instance properly utilizes the existing req storage pointer, optimizing the code as

advised.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style ,

The linked require checks have no error messages explicitly defined.

src/abstract/AsRescuable.sol

ARE-04C: Inexistent Error Messages

AsRescuable.sol:L57 L81

Description:

Example:

require(!_isRescueUnlocked(req));

SOL

57

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L57
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuable.sol#L81

We advise each to be set so to increase the legibility of the codebase and aid in validating the require

checks' conditions.

While the latter of the two require checks is accompanied by descriptive in-line documentation, the

former is not thus rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsRescuableAbstract Code Style Findings

Type Severity Location

Gas Optimization

The RescueRequest data structure will occupy two storage slots redundantly as the timestamp value will

fit reasonably within 96 bits as a Unix timestamp.

src/abstract/AsRescuableAbstract.sol

ARA-01C: Optimization of Data Structure

AsRescuableAbstract.sol:L15

Description:

Example:

struct RescueRequest {

 uint256 timestamp;

 address receiver;

}

mapping(address => RescueRequest) internal rescueRequests;

SOL

14

15

16

17

18

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsRescuableAbstract.sol#L15

We advise the data type of the timestamp to be updated, ensuring that each rescueRequests entry

occupies a single storage slot.

The RescueRequest data structure, now relocated to the AsRescuable implementation, has not applied

the timestamp related optimization rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

AsSequentialSet Code Style Findings

Type Severity Location

Language Specific ,

The linked mathematical operations are guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/libs/AsSequentialSet.sol

ASS-01C: Ineffectual Usage of Safe Arithmetics

AsSequentialSet.sol:L114 L145

Description:

Example:

require(i > 0, "Element not found");

removeAt(q, i - 1);

SOL

144

145

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L145

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statements to be wrapped in unchecked code blocks thereby optimizing their execution cost.

The referenced arithmetic operations in their relocated AsIterableSet location are still performed using

checked arithmetic, rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization ,

The linked for loops evaluate their limit inefficiently on each iteration.

src/libs/AsSequentialSet.sol

ASS-02C: Inefficient Loop Limit Evaluations

AsSequentialSet.sol:L114 L250

Description:

Example:

for (uint256 j = q.data.length; j > i; j--) {

SOL

114

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L114
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L250

We advise the statements within the for loop limits to be relocated outside to a local variable declaration

that is consequently utilized for the evaluations to significantly reduce the codebase's gas cost. We

should note the same optimization is applicable for storage reads present in those limits as they are newly

read on each iteration (i.e. length members of arrays in storage).

The former of the two loops is no longer present in the codebase whilst the latter remains unoptimized,

rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style

The linked require check has no error message explicitly defined.

src/libs/AsSequentialSet.sol

ASS-03C: Inexistent Error Message

AsSequentialSet.sol:L173

Description:

Example:

require(i < q.data.length);

SOL

173

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L173

We advise one to be set so to increase the legibility of the codebase and aid in validating the require

check's condition.

The referenced require error remains without an explicit error message or in-line documentation

justifying it, rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization

The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe

arithmetics (post- 0.8.X).

src/libs/AsSequentialSet.sol

ASS-04C: Loop Iterator Optimization

AsSequentialSet.sol:L250

Description:

Example:

for (uint256 i = 0; i < q.data.length; i++) {

SOL

250

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L250

We advise the increment / decrement operation to be performed in an unchecked code block as the last

statement within the for loop to optimize its execution cost.

The referenced loop iterator's increment statement has been relocated at the end of the for loop's body

and has been unwrapped in an unchecked code block, optimizing its gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization

The referenced delete operation is redundant as the data entry is overwritten in the ensuing statement.

src/libs/AsSequentialSet.sol

ASS-05C: Redundant Deletion Operation

AsSequentialSet.sol:L130

Description:

Example:

function removeAt(Set storage q, uint256 i) internal {

 require(i < q.data.length, "Index out of bounds");

 if (i < q.data.length - 1) {

 delete q.data[i];

 q.data[i] = q.data[q.data.length - 1];

 }

 q.data.pop();

}

SOL

127

128

129

130

131

132

133

134

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/AsSequentialSet.sol#L130

We advise the delete operation to be omitted, optimizing the code's gas cost.

The redundant delete operation has been safely omitted from the codebase, optimizing the function's

gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

ChainlinkUtils Code Style Findings

Type Severity Location

Language Specific ,

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/libs/ChainlinkUtils.sol

CUS-01C: Ineffectual Usage of Safe Arithmetics

ChainlinkUtils.sol:L29 L30

Description:

Example:

// debase pyth feed decimals to target decimals

return _targetDecimals >= feedDecimals ?

 uint256(basePrice) * 10 ** uint32(_targetDecimals - feedDecimals) :

 uint256(basePrice) / 10 ** uint32(feedDecimals - _targetDecimals);

SOL

27

28

29

30

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L29
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L30

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The relevant statement has been significantly refactored and now lives under the

ChainlinkProvider::_toUsdBp , wrapped in an unchecked code block.

We do not consider the present unchecked code block introduced to be safe, as it relies on an _invert

flag instead of the actual relation between the variables subtracted thus rendering this exhibit not

validated to highlight the fact of this insecurity.

The Astrolab DAO team opted to revert the unchecked code block's introduction, ensuring that the

statements are performed safely yet inefficiently per their original implementation.

As such, we consider this exhibit acknowledged as the Astrolab DAO team does not intend to apply the

optimization properly.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/ChainlinkProvider.sol#L66-L90

Type Severity Location

Code Style ,

The linked value literal is repeated across the codebase multiple times.

src/libs/ChainlinkUtils.sol

CUS-02C: Repetitive Value Literal

ChainlinkUtils.sol:L49 L50

Description:

Example:

return getPriceUsd(_feeds[0], _validities[0], 18)

SOL

49

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L49
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/ChainlinkUtils.sol#L50

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The referenced value literal now lives under the PriceProvider implementation and specifically the

USD_DECIMALS constant variable, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

PythUtils Code Style Findings

Type Severity Location

Language Specific ,

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/libs/PythUtils.sol

PUS-01C: Ineffectual Usage of Safe Arithmetics

PythUtils.sol:L33 L34

Description:

Example:

// debase pyth feed decimals to target decimals

return _targetDecimals >= feedDecimals ?

 basePrice * 10 ** uint32(_targetDecimals - feedDecimals) :

 basePrice / 10 ** uint32(feedDecimals - _targetDecimals);

SOL

31

32

33

34

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L33
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L34

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The relevant statement has been significantly refactored and now lives under the

PythProvider::_toUsdBp , wrapped in an unchecked code block.

We do not consider the present unchecked code block introduced to be safe, as it relies on an _invert

flag instead of the actual relation between the variables subtracted thus rendering this exhibit not

validated to highlight the fact of this insecurity.

The Astrolab DAO team opted to revert the unchecked code block's introduction, ensuring that the

statements are performed safely yet inefficiently per their original implementation.

As such, we consider this exhibit acknowledged as the Astrolab DAO team does not intend to apply the

optimization properly.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PythProvider.sol#L66-L95

Type Severity Location

Code Style ,

The linked value literal is repeated across the codebase multiple times.

src/libs/PythUtils.sol

PUS-02C: Repetitive Value Literal

PythUtils.sol:L70 L71

Description:

Example:

return getPriceUsd(_pyth, _feeds[0], _validities[0], 18)

SOL

70

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L70
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/libs/PythUtils.sol#L71

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The referenced value literal now lives under the PriceProvider implementation and specifically the

USD_DECIMALS constant variable, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5 Code Style Findings

Type Severity Location

Code Style ,

The referenced line contains a typographical mistake (i.e. private variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

src/abstract/StrategyV5.sol

SV5-01C: Generic Typographic Mistake

StrategyV5.sol:L467 L474

Description:

Example:

* @param _amount Amount of asset to liquidate with (0 == totalPendingAssetRequest()

+ allocated.bp(100))

SOL

467

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L467
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L474

We advise this to be done so to enhance the legibility of the codebase.

The documentation was updated to reflect the 150 number that used to be utilized in the instance of the

codebase during the preliminary report, however, the latest instance utilizes the 50 value as an

overallocation.

As such, we advise the documentation to be updated so as to reflect this adjustment.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Standard Conformity , , , ,

The referenced functions are meant to be virtual and implemented by derivative implementations,

however, an empty declaration is present in both that would permit each to be invoked.

src/abstract/StrategyV5.sol

SV5-02C: Improper Declarations of Abstract Functions

StrategyV5.sol:L109-L112 L160-L162 L238-L241 L309 L316

Description:

Example:

/**

 * @notice Withdraw asset function, can remove all funds in case of emergency

 * @param _amounts Amounts of asset to withdraw

 * @param _params Swaps calldata

 * @return assetsRecovered Amount of asset withdrawn

 */

function _liquidate(

 uint256[8] calldata _amounts, // from previewLiquidate()

 bytes[] memory _params

) internal virtual returns (uint256 assetsRecovered) {}

SOL

103

104

105

106

107

108

109

110

111

112

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#standard-conformity
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L109-L112
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L160-L162
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L309
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L316-L319

We advise the functions to be declared without a code block ({}) to ensure they are overridden by

derivative implementations.

While some functions have been properly implemented thus rendering the empty code block observation

no longer applicable, functions such as StrategyV5::_stake remain with an empty code block rendering

this exhibit partially alleviated.

All functions have been properly updated to no longer implement a code block where applicable,

rendering this exhibit fully addressed.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L336-L339

Type Severity Location

Language Specific ,

The linked mathematical operation is guaranteed to be performed safely by surrounding conditionals

evaluated in either require checks or if-else constructs.

src/abstract/StrategyV5.sol

SV5-03C: Ineffectual Usage of Safe Arithmetics

StrategyV5.sol:L484 L507

Description:

Example:

if (need > _amount)

 need = _amount;

amounts[i] = _assetToInput(need, i);

_amount -= need;

SOL

481

482

483

484

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#language-specific
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L484
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L507

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked

statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

An unchecked code block has been safely introduced in both referenced instances, optimizing the code's

gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization , , , , ,

The referenced for loops utilize a uint8 variable as an iterator which is inefficient.

src/abstract/StrategyV5.sol

SV5-04C: Inefficient Iterator Type

StrategyV5.sol:L186 L381 L432 L461 L477 L500

Description:

Example:

for (uint8 i = 0; i < rewardLength; i++) {

SOL

186

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L186
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L381
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L432
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L461
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L477
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L500

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped

to uint256 , optimizing their gas cost.

Most of the instances have been properly upcast to optimize them, however, the StrategyV5::_invest

and StrategyV5::_liquidate functions continue to use suboptimal operators rendering this exhibit

partially alleviated.

The uint8 iterators in the StrategyV5::_invest and StrategyV5::_liquidate functions have been

updated to their upcasted format, applying the described optimization in full.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/StrategyV5.sol#L109-L112
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/StrategyV5.sol#L238-L241
https://github.com/AstrolabDAO/strats/blob/efbeab6478c33d629e4423f01f3c819a8d365093/src/abstract/StrategyV5.sol#L109-L112

Type Severity Location

Gas Optimization , , , , ,

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post- 0.8.X).

src/abstract/StrategyV5.sol

SV5-05C: Loop Iterator Optimizations

StrategyV5.sol:L186 L381 L432 L461 L477 L500

Description:

Example:

for (uint8 i = 0; i < rewardLength; i++) {

SOL

186

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L186
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L381
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L432
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L461
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L477
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L500

We advise the increment / decrement operations to be performed in an unchecked code block as the last

statement within each for loop to optimize their execution cost.

The referenced loop iterator increment statements have been relocated at the end of each respective for

loop's body and have been unwrapped in an unchecked code block, optimizing their gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization

The StrategyV5::compound function redundantly applies the AsManageable::onlyKeeper modifier when

its inner calls will perform the same validation (StrategyV5::compound -> StrategyV5::_compound ->

StrategyV5::harvest -> StrategyV5::_harvest -> StrategyV5::_swapRewards).

src/abstract/StrategyV5.sol

SV5-06C: Redundant Application of Access Control

StrategyV5.sol:L298

Description:

Example:

/**

 * @notice Executes the compound operation in the strategy

 * @param _amounts Amounts of inputs to compound (in asset, after harvest->

should include rewards)

 * @param _params Generic callData for the compound operation

 * @return iouReceived IOUs received from the compound operation

 * @return harvestedRewards Amount of rewards harvested

 */

function compound(

 uint256[8] calldata _amounts,

 bytes[] memory _params

SOL

286

287

288

289

290

291

292

293

294

295

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L293-L303
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/AsManageable.sol#L49-L52
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L293-L303
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L269-L284
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L217-L229
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L206-L210
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L183-L199
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L298

Example (Cont.):

)

 external

 onlyKeeper

 returns (uint256 iouReceived, uint256 harvestedRewards)

{

 (iouReceived, harvestedRewards) = _compound(_amounts, _params);

 emit Compound(iouReceived, block.timestamp);

}

SOL

296

297

298

299

300

301

302

303

We advise access control to be solely applied to the innermost functions, ensuring that restrictions are

optimally applied.

The access control inefficiency remains in the codebase rendering this exhibit acknowledged.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Code Style

The referenced statement is redundantly wrapped in parenthesis (()).

src/abstract/StrategyV5.sol

SV5-07C: Redundant Parenthesis Statement

StrategyV5.sol:L147

Description:

Example:

if ((liquidityAvailable < _minLiquidity) && !_panic)

SOL

147

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5.sol#L147

We advise them to be safely omitted, increasing the legibility of the codebase.

The redundant parenthesis in the referenced statement have been safely omitted.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Abstract Code Style Findings

Type Severity Location

Code Style , , , , ,

The referenced lines contain typographical mistakes (i.e. private variable without an underscore prefix)

or generic documentational errors (i.e. copy-paste) that should be corrected.

src/abstract/StrategyV5Abstract.sol

SVT-01C: Generic Typographic Mistakes

StrategyV5Abstract.sol:L38 L41 L44 L45 L46 L52

Description:

Example:

address internal stratProxy; // Address of the strategy proxy

SOL

38

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L38
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L41
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L44
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L45
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L46
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Abstract.sol#L52

We advise them to be corrected enhancing the legibility of the codebase.

The referenced variable as well as its associated concept have been removed from the codebase

rendering this exhibit no longer applicable.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Agent Code Style Findings

Type Severity Location

Gas Optimization ,

The referenced for loops utilize a uint8 variable as an iterator which is inefficient.

src/abstract/StrategyV5Agent.sol

SVA-01C: Inefficient Iterator Type

StrategyV5Agent.sol:L125 L142

Description:

Example:

for (uint8 i = 0; i < _rewardTokens.length; i++) {

SOL

142

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L125
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L142

As the EVM is built to operate on 32-byte (256-bit) data types, we advise the iterator types to be bumped

to uint256 , optimizing their gas cost.

While the referenced iterator types have been optimized, the StrategyV5Agent::_setInputWeights

function continues to utilize a uint8 iterator type which is inefficient.

The uint8 iterator in the StrategyV5Agent::_setInputWeights function has been updated accordingly,

rendering this exhibit fully addressed.

Recommendation:

Alleviation (59b75fbee1):

Alleviation (efbeab6478):

Type Severity Location

Gas Optimization , , ,

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post- 0.8.X).

src/abstract/StrategyV5Agent.sol

SVA-02C: Loop Iterator Optimizations

StrategyV5Agent.sol:L51 L55 L125 L142

Description:

Example:

for (uint256 i = 0; i < rewardLength; i++) {

SOL

51

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L51
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L55
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L125
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Agent.sol#L142

We advise the increment / decrement operations to be performed in an unchecked code block as the last

statement within each for loop to optimize their execution cost.

The referenced loop iterator increment statements have been relocated at the end of each respective for

loop's body and have been unwrapped in an unchecked code block, optimizing their gas cost.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Chainlink Code Style Findings

Type Severity Location

Code Style

The referenced line contains a typographical mistake (i.e. private variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

src/abstract/StrategyV5Chainlink.sol

SVC-01C: Generic Typographic Mistake

StrategyV5Chainlink.sol:L24

Description:

Example:

mapping (IChainlinkAggregatorV3 => uint8) internal decimalsByFeed;

SOL

24

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L24

We advise this to be done so to enhance the legibility of the codebase.

The relevant declaration, now located under PriceProvider , has been properly prefixed with an

underscore rendering this exhibit addressed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization

The linked for loop increments / decrements the iterator "safely" due to Solidity's built-in safe

arithmetics (post- 0.8.X).

src/abstract/StrategyV5Chainlink.sol

SVC-02C: Loop Iterator Optimization

StrategyV5Chainlink.sol:L69

Description:

Example:

for (uint256 i = 0; i < _chainlinkParams.inputFeeds.length; i++) {

SOL

69

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L69

We advise the increment / decrement operation to be performed in an unchecked code block as the last

statement within the for loop to optimize its execution cost.

The relevant loop has been relocated under the PriceProvider::_setFeeds function and its iterator has

been optimized rendering this exhibit addressed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PriceProvider.sol#L166-L180

Type Severity Location

Code Style ,

The linked value literal is repeated across the codebase multiple times.

src/abstract/StrategyV5Chainlink.sol

SVC-03C: Repetitive Value Literal

StrategyV5Chainlink.sol:L91 L93

Description:

Example:

uint256 retiredPrice = ChainlinkUtils.getPriceUsd(retiredFeed,

validityByFeed[retiredFeed], 18);

SOL

91

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L91
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Chainlink.sol#L93

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The relevant literal has been declared as a constant labelled USD_DECIMALS under the PriceProvider

implementation, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

StrategyV5Pyth Code Style Findings

Type Severity Location

Code Style

The referenced line contains a typographical mistake (i.e. private variable without an underscore prefix)

or generic documentational error (i.e. copy-paste) that should be corrected.

src/abstract/StrategyV5Pyth.sol

SVP-01C: Generic Typographic Mistake

StrategyV5Pyth.sol:L26

Description:

Example:

IPythAggregator internal pyth; // Pyth oracle

SOL

26

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L26

We advise this to be done so to enhance the legibility of the codebase.

The relevant declaration, now located under PythProvider , has been properly prefixed with an

underscore rendering this exhibit addressed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Type Severity Location

Gas Optimization ,

The linked for loops increment / decrement their iterator "safely" due to Solidity's built - in safe

arithmetics (post- 0.8.X).

src/abstract/StrategyV5Pyth.sol

SVP-02C: Loop Iterator Optimizations

StrategyV5Pyth.sol:L73 L126

Description:

Example:

for (uint256 i = 0; i < _pythParams.inputFeeds.length; i++) {

SOL

73

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#gas-optimization
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L73
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L126

We advise the increment / decrement operations to be performed in an unchecked code block as the last

statement within each for loop to optimize their execution cost.

The former loop has been relocated under the PriceProvider::_setFeeds function and its iterator has

been optimized whilst the latter loop is no longer present in the codebase.

These actions cumulatively render this exhibit addressed.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

https://github.com/AstrolabDAO/strats/blob/59b75fbee1d8f3dee807c928f18be41c58b904e1/src/abstract/PriceProvider.sol#L166-L180

Type Severity Location

Code Style ,

The linked value literal is repeated across the codebase multiple times.

src/abstract/StrategyV5Pyth.sol

SVP-03C: Repetitive Value Literal

StrategyV5Pyth.sol:L99 L107

Description:

Example:

18);

SOL

99

https://omniscia.io/reports/astrolab-dao-base-strategy-contracts-65e1bcecc671710018ae0d4f/appendix/finding-types#code-style
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L99
https://github.com/AstrolabDAO/strats/blob/5427ca2aaaafa0be3b90fc057a8b79f4088cba32/src/abstract/StrategyV5Pyth.sol#L107

We advise it to be set to a constant variable instead optimizing the legibility of the codebase.

The relevant literal has been declared as a constant labelled USD_DECIMALS under the PriceProvider

implementation, addressing this exhibit.

Recommendation:

Alleviation (59b75fbee1d8f3dee807c928f18be41c58b904e1):

Finding Types

A description of each finding type included in the report can be found below and is linked by each

respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit

methodology we will publish soon.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in

place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either due to

mistyped code, convoluted if blocks, overlapping functions / variable names and other ambiguous

statements.

Language specific issues arise from certain peculiarities that the Circom language boasts that discerns it

from other conventional programming languages.

Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports BSL12-381

(which has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field). However, since there are no

constants denoting either the prime or the prime size in bits available in the Circom language, some

Circomlib templates like Sign (which returns the sign of the input signal), and AliasCheck (used by the

strict versions of Num2Bits and Bits2Num), hardcode either the BN128 prime size or some other constant

related to BN128. Using these circuits with a custom prime may thus lead to unexpected results and

should be avoided.

In these types of findings, we identify whether a project conforms to a particular naming convention and

whether that convention is consistent within the codebase and legible. In case of inconsistencies, we

point them out under this category. Additionally, variable shadowing falls under this category as well which

is identified when a local-level variable contains the same name as a toplevel variable in the circuit.

This category is used when a mathematical issue is identified. This implies an issue with the

implementation of a calculation compared to the specifications.

Input Sanitization

Indeterminate Code

Language Specific

Curve Specific

Code Style

Mathematical Operations

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are

implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar

extraordinary scenarios.

This category is used when information that is meant to be kept private is made public in some way.

Under-constrained signals are one of the most common issues in zero-knowledge circuits. Issues with

proof generation fall under this category.

Logical Fault

Privacy Concern

Proof Concern

Severity Definition

In the ever-evolving world of blockchain technology, vulnerabilities continue to take on new forms and

arise as more innovative projects manifest, new blockchain-level features are introduced, and novel layer-

2 solutions are launched. When performing security reviews, we are tasked with classifying the various

types of vulnerabilities we identify into subcategories to better aid our readers in understanding their

impact.

Within this page, we will clarify what each severity level stands for and our approach in categorizing the

findings we pinpoint in our audits. To note, all severity assessments are performed as if the contract's

logic cannot be upgraded regardless of the underlying implementation.

There are five distinct severity levels within our reports; unknown , informational , minor , medium , and

major . A TL;DR overview table can be found below as well as a dedicated chapter to each severity level:

Impact (None) Impact (Low) Impact
(Moderate) Impact (High)

Likelihood (None)

Likelihood (Low)

Likelihood (Moderate)

Likelihood (High)

The unknown severity level is reserved for misbehaviors we observe in the codebase that cannot be

quantified using the above metrics. Examples of such vulnerabilities include potentially desirable system

behavior that is undocumented, reliance on external dependencies that are out-of-scope but could result

in some form of vulnerability arising, use of external out-of-scope contracts that appears incorrect but

cannot be pinpointed, and other such vulnerabilities.

In general, unknown severity level vulnerabilities require follow-up information by the project being

audited and are either adjusted in severity (if valid), or marked as nullified (if invalid).

Additionally, the unknown severity level is sometimes assigned to centralization issues that cannot be

assessed in likelihood due to their exploitation being tied to the honesty of the project's team.

The informational severity level is dedicated to findings that do not affect the code functionally and

tend to be stylistic or optimizational in nature. Certain edge cases are also set under informational

vulnerabilities, such as overflow operations that will not manifest in the lifetime of the contract but should

be guarded against as a best practice, to give an example.

Severity Levels

Unknown Severity

Informational Severity

Minor Severity

The minor severity level is meant for vulnerabilities that require functional changes in the code but tend

to either have little impact or be unlikely to be recreated in a production environment. These findings can

be acknowledged except for findings with a moderate impact but low likelihood which must be alleviated.

The medium severity level is assigned to vulnerabilities that must be alleviated and have an observable

impact on the overall project. These findings can only be acknowdged if the project deems them desirable

behavior and we disagree with their point-of-view, instead urging them to reconsider their stance while

marking the exhibit as acknowledged given that the project has ultimate say as to what vulnerabilities they

end up patching in their system.

The major severity level is the maximum that can be specified for a finding and indicates a significant

flaw in the code that must be alleviated.

Medium Severity

Major Severity

As the preface chapter specifies, the blockchain space is constantly reinventing itself meaning that new

vulnerabilities take place and our understanding of what security means differs year-to-year.

In order to reliably assess the likelihood and impact of a particular vulnerability, we instead apply an

abstract measurement of a vulnerability's impact, duration the impact is applied for, and probability that

the vulnerability would be exploited in a production environment.

Our proposed definitions are inspired by multiple sources in the security community and are as follows:

Likelihood & Impact Assessment

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)

and is in effect for all past, current, and future audit reports that are produced and hosted under

Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and

highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the

codebase that were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes

them extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may

include unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not

constitute endorsement, agreement or acceptance for the Project and technology that was reviewed.

Users relying on this security review should not consider this as having any merit for financial advice or

technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,

competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees,

nor assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or

any system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any

objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment

advice, nor should it be used to signal that any person reading this report should invest their funds

without sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy

or solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the

high level of variance associated with utilizing new and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the

technology that was in scope for this security review.

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of

this security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards

to the information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not

standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or

safeguards may be insufficient and users should exercise maximum caution when participating and/or

investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable

recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or

revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this

engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the

necessary checks to ensure that the contracts are functioning as intended, and more specifically to

ensure that the functions contained within the contracts in scope have the desired intended effects,

functionalities and outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other

materials, products or results of this security review engagement is provided "as is" and "as available"

and with all faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of

content, suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this

engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind

whatsoever that resulted in this engagement and the customer having access to or use of the products,

engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated

services or materials, shall not be considered or relied upon as any form of financial, investment, tax,

legal, regulatory, or any other type of advice.

