
SECURITY REVIEW
REPORT FOR
ASTROLAB

1

Apr.23

+44 808 2711555 info@hexens.io

⬢ About Hexens / 4

⬢ Audit led by / 5

⬢ Methodology / 7

⬢ Severity structure / 8

⬢ Executive summary / 9

⬢ Scope / 10

⬢ Summary / 11

⬢ Weaknesses / 12

⬡ Wrong debt calculations during withdrawal / 12

⬡ No slippage protection for bridgeFunds / 15

⬡ Wrong rebalance implementation / 17

⬡ Wrong Emergency Stop pattern usage / 20

⬡ Missing fee limits check / 22

⬡ Incorrect withdraw preview calculations / 24

⬡ Missing event on decreasing liquidity / 26

⬡ Possible freeze of native tokens / 27

⬡ Redundant imports / 28

⬡ Missing array parameters length check / 29

⬡ Code style problems / 33

⬡ Redundant usage of SafeMath / 38

CONTENTS

2

#

+44 808 2711555 info@hexens.io

⬡ Lack of parameter description / 39

⬡ Redundant payable declaration / 40

⬡ Gas Optimisation / 41

⬡ Clean code / 43

⬡ Redundant inheritance / 45

⬡ Incorrect event emission parameter / 46

⬡ Gas Optimisation / 47

⬡ Misleading error declaration / 48

⬡ Message value check is missing / 49

CONTENTS

3

+44 808 2711555 info@hexens.io

ABOUT HEXENS

Hexens is a cybersecurity company that strives to elevate the
standards of security in Web 3.0, create a safer environment for
users, and ensure mass Web 3.0 adoption.

Hexens has multiple top-notch auditing teams specialized in
different fields of information security, showing extreme
performance in the most challenging and technically complex
tasks, including but not limited to: Infrastructure Audits, Zero
Knowledge Proofs / Novel Cryptography, DeFi and NFTs. Hexens not
only uses widely known methodologies and flows, but focuses on
discovering and introducing new ones on a day-to-day basis.

In 2022, our team announced the closure of a $4.2 million seed
round led by IOSG Ventures, the leading Web 3.0 venture capital.
Other investors include Delta Blockchain Fund, Chapter One, Hash
Capital, ImToken Ventures, Tenzor Capital, and angels from Polygon
and other blockchain projects.

Since Hexens was founded in 2021, it has had an impressive track
record and recognition in the industry: Mudit Gupta - CISO of
Polygon Technology - the biggest EVM Ecosystem, joined the
company advisory board after completing just a single
cooperation iteration. Polygon Technology, 1inch, Lido, Hats
Finance, Quickswap, Layerswap, 4K, RociFi, as well as dozens of
DeFi protocols and bridges, have already become our customers
and taken proactive measures towards protecting their assets.

4

+44 808 2711555 info@hexens.io 55

AUDIT
LED BY

VAHE
KARAPETYAN
Co-founder / CTO | Hexens

Audit Starting Date
03.04.2023

Audit Completion Date
17.04.2023

+44 808 2711555 info@hexens.io

METHODOLOGY

Companies often assign just one engineer to one security assessment
with no specified level. Despite the possible impeccable skills of the
assigned engineer, it carries risks of the human factor that can affect
the product's lifecycle.

COMMON AUDIT PROCESS

Hexens methodology involves 2 teams, including multiple auditors of
different seniority, with at least 5 security engineers. This unique
cross-checking mechanism helps us provide the best quality in the
market.

HEXENS METHODOLOGY

6

+44 808 2711555 info@hexens.io

SEVERITY CHARACTERISTICS

Vulnerabilities can range in severity and impact, and it's important
to understand their level of severity in order to prioritize their
resolution. Here are the different types of severity levels of
vulnerabilities:

CRITICAL
Vulnerabilities with this level of severity can result in significant financial
losses or reputational damage. They often allow an attacker to gain
complete control of a contract, directly steal or freeze funds from the
contract or users, or permanently block the functionality of a protocol.
Examples include infinite mints and governance manipulation.

SEVERITY STRUCTURE
The vulnerability severity is calculated based on two components

● Impact of the vulnerability
● Probability of the vulnerability

7

IMPACT PROBABILITY

Rare Unlikely Likely Very Likely

Low / Info Low / Info Low / Info Medium Medium

Medium Low / Info Medium Medium High

High Medium Medium High Critical

Critical Medium High Critical Critical

+44 808 2711555 info@hexens.io

HIGH
Vulnerabilities with this level of severity can result in some financial losses
or reputational damage. They often allow an attacker to directly steal yield
from the contract or users, or temporarily freeze funds. Examples include
inadequate access control integer overflow/underflow, or logic bugs.

MEDIUM
Vulnerabilities with this level of severity can result in some damage to the
protocol or users, without profit for the attacker. They often allow an attacker
to exploit a contract to cause harm, but the impact may be limited, such as
temporarily blocking the functionality of the protocol. Examples include
uninitialized storage pointers and failure to check external calls.

LOW
Vulnerabilities with this level of severity may not result in financial losses or
significant harm. They may, however, impact the usability or reliability of a
contract. Examples include slippage and front-running, or minor logic bugs.

INFORMATIONAL
Vulnerabilities with this level of severity are regarding gas optimizations and
code style. They often involve issues with documentation, incorrect usage
of EIP standards, best practices for saving gas, or the overall design of a
contract. Examples include not conforming to ERC20, or disagreement
between documentation and code.

It's important to consider all types of vulnerabilities, including
informational ones, when assessing the security of the project. A
comprehensive security audit should consider all types of
vulnerabilities to ensure the highest level of security and
reliability.

8

+44 808 2711555 info@hexens.io 99

EXECUTIVE
SUMMARY

OVERVIEW

This audit covered Astrolab’s new cross chain protocol. The
protocol is based on special vault system to provide immediate
liquidity for cross chain actions and also it uses Stargate.

Our security assessment was a full review of the Astrolab’s
protocol (except the exact implementations of parent smart
contracts like LayerZero App). We have thoroughly reviewed each
contract individually, as well as the system as a whole.

During our audit, we have identified 1 critical severity vulnerability
in the Crate contract. It would allow to inflate the vault share price
and effectively steal assets from other users.

We have also identified 1 high severity vulnerability, various minor
vulnerabilities and code optimisations.

Finally, all of our reported issues were fixed by the development
team and consequently validated by us.

We can confidently say that the overall security and code quality
has increased after completion of our audit.

+44 808 2711555 info@hexens.io

The analyzed resources are located at:
https://github.com/AstrolabFinance/contracts/commit/ded9dff476f
415a5934f2cfcd3d1120734039272

The issues described in this report were fixed in the following
commit:
https://github.com/AstrolabFinance/contracts/commit/62335c7fec
2870babf0ff6170ccef3603747b42c

SCOPE

10

https://github.com/AstrolabFinance/contracts/commit/ded9dff476f415a5934f2cfcd3d1120734039272
https://github.com/AstrolabFinance/contracts/commit/ded9dff476f415a5934f2cfcd3d1120734039272
https://github.com/AstrolabFinance/contracts/commit/62335c7fec2870babf0ff6170ccef3603747b42c
https://github.com/AstrolabFinance/contracts/commit/62335c7fec2870babf0ff6170ccef3603747b42c

+44 808 2711555 info@hexens.io

TOTAL: 21

SUMMARY

HIGH

CRITICAL

MEDIUM

1

1

4

INFORMATIONAL 9

SEVERITY NUMBER OF FINDINGS

SEVERITY STATUS

11

LOW 12

+44 808 2711555 info@hexens.io

ASTRO-13. WRONG DEBT
CALCULATIONS DURING
WITHDRAWAL

SEVERITY: Critical

PATH: Crate.sol

REMEDIATION: move decreasing liquididyPool.dept decreasing in
try block

STATUS: fixed

DESCRIPTION:

The functions safeWithdraw, and safeRedeem have inconsistent debt

calculation logic.

A bad actor can call safeWithdraw/safeRedeem function with such

parameters that revert swapVirtualToAsset function call (for example, with

a past deadline). That function is executed in try/catch block, but before

the try/catch the _withdraw() function decreases liquidityPool.debt.

Even if swapToVirtualAsset() reverts the liquidityPool.debt will already be

decreased.

As a result, _withdraw() function decreases crate.totalAssets() twice. It

affects all calculations, f.e increaseLiquidity, decreaseLiquidity,

rebalanceLiquidity, shareToAsset, assetToShare, etc.

WEAKNESSES
This section contains the list of discovered weaknesses.

12

+44 808 2711555 info@hexens.io 13

 function _withdraw(

 uint256 _amount,

 uint256 _shares,

 uint256 _minAmountOut,

 uint256 _deadline,

 address _receiver,

 address _owner

) internal nonReentrant returns (uint256 recovered) {

 if (_amount == 0 || _shares == 0) revert AmountZero();

 // We spend the allowance if the msg.sender isn't the receiver

 if (msg.sender != _owner) {

 _spendAllowance(_owner, msg.sender, _shares);

 }

 // Check for rounding error since we round down in previewRedeem.

 if (convertToAssets(_shares) == 0)

 revert IncorrectAssetAmount(convertToAssets(_shares));

 // We burn the tokens

 _burn(_owner, _shares);

 // Allows to take a withdraw fee

 _amount = (_amount * (MAX_BPS - withdrawFee)) / MAX_BPS;

 if (liquidityPoolEnabled) {

 // We don't take into account the eventual slippage, since it will

 // be paid to the depositoors

 liquidityPool.debt -= Math.min(_amount, liquidityPool.debt);

 try

 liquidityPool.swap.swapVirtualToAsset(

 _amount,

 _minAmountOut,

 _deadline,

 _receiver

)

+44 808 2711555 info@hexens.io 14

 returns (uint256 dy) {

 recovered = dy;

 } catch {

 // if the swap fails, we send the funds available

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

 } else {

 // If the liquidity pool is not enabled, we send the funds available

 // This allows for the bootstrapping of the pool at start

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

 if (_minAmountOut > 0 && recovered < _minAmountOut)

 revert IncorrectAssetAmount(recovered);

 emit Withdraw(msg.sender, _receiver, _owner, _amount, _shares);

 return (recovered);

 }

+44 808 2711555 info@hexens.io

ASTRO-22. NO SLIPPAGE
PROTECTION FOR BRIDGEFUNDS

SEVERITY: High

PATH: BridgeConnectorHomeSTG.sol,
BridgeConnectorRemoteSTG.sol

REMEDIATION: add a minimal output amount parameter in
bridgeFunds

STATUS: fixed

DESCRIPTION:

The function bridgeFunds (in both Home and Remote contracts) is used to

send assets from a crate to a remote chain; it uses Stargate to make the

swap. Although the minimal output amount parameter of the swap is

hardcoded to be zero, thus the swap will be made without slippage

protection. Although a stableswap is being made, slippage protection

should be in place as it can be “sandwich” attacked or manipulated by

unexpected market conditions.

Furthermore, all debt calculations will be misaligned if slippage occurs and

thus impact protocol consistency.

15

+44 808 2711555 info@hexens.io 16

function bridgeFunds(

 uint256 _amount,

 uint256 _chainId

) external payable override onlyCrate {B

 // Loading this in memory for gas savings

 // We send directly to the allocator

 address destination = allocatorsMap[_chainId];

 uint256 dstPoolId = dstPoolIdMap[_chainId];

 if (dstPoolId == 0) {

 revert PoolNotSet(_chainId);

 }

 // Bridging using Stargate

 IStargateRouter(stgEndpoint).swap{ value: msg.value }(

 lzChainIdMap[_chainId], // destination chain Id

 srcPoolId, // local pool Id (ex: USDC is 1)

 dstPoolIdMap[_chainId], // remote pool Id

 payable(tx.origin), // refund address for extra gas

 _amount, // quantity to swap

 0, // the min qty you would accept on the destination

 IStargateRouter.lzTxObj(0, 0, bytes("")), // params for gas forwarding

 abi.encodePacked(destination), // receiver of the tokens

 bytes("") // data for the destination router

);

 emit BridgeSuccess(_amount, _chainId, msg.value, destination);

 }

+44 808 2711555 info@hexens.io

ASTRO-24. WRONG REBALANCE
IMPLEMENTATION

SEVERITY: Medium

PATH: Crate.sol

REMEDIATION: consider rebalancing before each withdrawal to
ensure the correctness of the output amount. For not getting
reverted, in case of the pool is already rebalanced, consider
changing revert from rebalanceLiquidityPool() to f.e if statement
implementation

STATUS: fixed

DESCRIPTION:

When a user withdraws their assets or shares using the withdraw() or

redeem() functions, the pool is not being rebalanced. Therefore, if the case

of another user also wants to withdraw, they may end up withdrawing the

wrong amount of shares since the shares will not be rebalanced at that

point. This can result in a lower price for the shares, causing the second

user to receive fewer assets than they should. Additionally, the protocol will

earn more from this transaction.

17

+44 808 2711555 info@hexens.io 18

 function _withdraw(

 uint256 _amount,

 uint256 _shares,

 uint256 _minAmountOut,

 uint256 _deadline,

 address _receiver,

 address _owner

) internal nonReentrant returns (uint256 recovered) {

 if (_amount == 0 || _shares == 0) revert AmountZero();

 // We spend the allowance if the msg.sender isn't the receiver

 if (msg.sender != _owner) {

 _spendAllowance(_owner, msg.sender, _shares);

 }

 // Check for rounding error since we round down in previewRedeem.

 if (convertToAssets(_shares) == 0)

 revert IncorrectAssetAmount(convertToAssets(_shares));

 // We burn the tokens

 _burn(_owner, _shares);

 // Allows to take a withdraw fee

 _amount = (_amount * (MAX_BPS - withdrawFee)) / MAX_BPS;

 if (liquidityPoolEnabled) {

 // We don't take into account the eventual slippage, since it will

 // be paid to the depositoors

 liquidityPool.debt -= Math.min(_amount, liquidityPool.debt);

 try

 liquidityPool.swap.swapVirtualToAsset(

 _amount,

 _minAmountOut,

 _deadline,

 _receiver

)

 returns (uint256 dy) {

 recovered = dy;

 } catch {

 // if the swap fails, we send the funds available

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

+44 808 2711555 info@hexens.io 19

 } else {

 // If the liquidity pool is not enabled, we send the funds available

 // This allows for the bootstrapping of the pool at start

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

 if (_minAmountOut > 0 && recovered < _minAmountOut)

 revert IncorrectAssetAmount(recovered);

 emit Withdraw(msg.sender, _receiver, _owner, _amount, _shares);

 return (recovered);

 }

 function rebalanceLiquidityPool()

 public

 whenNotPaused

 returns (uint256 earned)

 {

 // Reverts if we the LP is not enabled

 if (!liquidityPoolEnabled) revert LiquidityPoolNotSet();

 // We check if we have enough funds to rebalance

 uint256 toSwap = _getAmountToSwap(

 asset.balanceOf(address(this)),

 liquidityPool

);

 if (toSwap == 0) revert NoFundsToRebalance();

 uint256 recovered = liquidityPool.swap.swapAssetToVirtual(

 toSwap,

 block.timestamp + 100

);

 liquidityPool.debt += recovered;

 earned = recovered - Math.min(toSwap, recovered);

 emit LiquidityRebalanced(recovered, earned);

 emit SharePriceUpdated(sharePrice(), block.timestamp);

 }

+44 808 2711555 info@hexens.io

ASTRO-8. WRONG EMERGENCY STOP
PATTERN USAGE

SEVERITY: Medium

PATH: Crate.sol

REMEDIATION: use whenNotPaused modifier for safeWithdraw(),
redeem(), and safeRedeem() functions

STATUS: fixed

DESCRIPTION:

The contract Crate.sol provides an Emergency Stop pattern, but some

functions don’t have any checks to halt their usage, so users can withdraw

or redeem after the owner has paused the contract.

20

function safeWithdraw(

 uint256 _amount,

 uint256 _minAmount,

 uint256 _deadline,

 address _receiver,

 address _owner

) external returns (uint256 shares) {

 // This represents the amount of crTokens that we're about to burn

 shares = convertToShares(_amount);

 _withdraw(_amount, shares, _minAmount, _deadline, _receiver, _owner);

 }

+44 808 2711555 info@hexens.io 21

function redeem(

 uint256 _shares,

 address _receiver,

 address _owner

) external returns (uint256 assets) {

 return (

 _withdraw(

 convertToAssets(_shares),

 _shares,

 0,

 block.timestamp,

 _receiver,

 _owner

)

);

 }

function safeRedeem(

 uint256 _shares,

 uint256 _minAmountOut, // Min_amount

 uint256 _deadline,

 address _receiver,

 address _owner

) external returns (uint256 assets) {

 return (

 _withdraw(

 convertToAssets(_shares), // _amount

 _shares, // _shares

 _minAmountOut,

 _deadline,

 _receiver, // _receiver

 _owner // _owner

)

);

 }

+44 808 2711555 info@hexens.io

ASTRO-19. MISSING FEE LIMITS
CHECK

SEVERITY: Medium

PATH: Crate.sol

REMEDIATION: add checks for fees in the contract constructor to
ensure that they are not bigger than MAX_PERF_FEE,
MAX_MGMT_FEE and MAX_WITHDRAW_FEE values

STATUS: fixed

DESCRIPTION:

Unlike in the setFees function, the Crate contract constructor is setting the

withdraw, performance and management fees, which are not being checked

to be smaller than some amount (e.g. 10%); checks should exist ensuring

that the fees are not exceeding some appropriate amount.

This way, the contract creator can set big fee values, even those that will

surpass 100% and drain the assets via a fee mechanism.

22

+44 808 2711555 info@hexens.io 23

 constructor(

 address _asset, // The asset we are using

 string memory _name, // The name of the token

 string memory _symbol, // The symbol of the token

 uint256 _performanceFee, // 100% = 10000

 uint256 _managementFee, // 100% = 10000

 uint256 _withdrawFee // 100% = 10000

) ERC20(_name, _symbol) {

 asset = IERC20(_asset);

 performanceFee = _performanceFee;

 managementFee = _managementFee;

 withdrawFee = _withdrawFee;

 tokenDecimals = IERC20Metadata(_asset).decimals();

 checkpoint = Checkpoint(block.timestamp, 10 ** tokenDecimals);

 _pause(); // We start paused

 }

+44 808 2711555 info@hexens.io

ASTRO-20. INCORRECT WITHDRAW
PREVIEW CALCULATIONS

SEVERITY: Medium

PATH: Crate.sol

REMEDIATION: change the preview formula to
convertToShares((_assets * MAX_BPS)/(MAX_BPS-withdrawfee))

STATUS: fixed

DESCRIPTION:

In the contract Crate, the withdraw preview function miscalculates how

many shares are needed to withdraw a fixed amount of assets.

The _withdraw function calculates the output amount:

_amount = (_amount * (MAX_BPS - withdrawFee)) / MAX_BPS;

while previewFunction uses the following formula:

(convertToShares(_assets) * (MAX_BPS + withdrawFee)) / MAX_BPS

Whilst the correct way to calculate the result will be to use formula:

convertToShares((_assets * MAX_BPS)/(MAX_BPS-withdrawfee)

As the majority of users will be using the frontend to preview and make the

withdrawals, this will eventually make them burn incorrect amounts of

shares.

24

+44 808 2711555 info@hexens.io 25

 function previewWithdraw(uint256 _assets) public view returns (uint256) {

 return (convertToShares(_assets) * (MAX_BPS + withdrawFee)) / MAX_BPS;

 }

+44 808 2711555 info@hexens.io

ASTRO-14. MISSING EVENT ON
DECREASING LIQUIDITY

SEVERITY: Low

PATH: Crate.sol

REMEDIATION: add LiquidityChanged event emission

STATUS: fixed

DESCRIPTION:

The function decreaseLiquidity does not emit the event

LiquidityChanged, in case there is such an event, in contrary to the

function increaseLiquidity which does emit the event.

26

 function decreaseLiquidity(uint256 _liquidityRemoved) external onlyOwner {

 // Rebalance first the pool to avoid any negative slippage

 uint256 lpBal = liquidityPool.swap.getVirtualLpBalance();

 uint256 assetBalBefore = asset.balanceOf(address(this));

 uint256 liquidityBefore = liquidityPool.liquidity;

 // we remove liquidity

 liquidityPool.liquidity -= _liquidityRemoved;

 // We specify the amount of LP that corresponds to the amount of liquidity removed

 liquidityPool.swap.removeLiquidity(

 (lpBal * _liquidityRemoved) / liquidityBefore,

 block.timestamp

);

 // We update the book

 liquidityPool.debt -= (asset.balanceOf(address(this)) - assetBalBefore);

 }

+44 808 2711555 info@hexens.io

ASTRO-15. POSSIBLE FREEZE OF
NATIVE TOKENS

SEVERITY: Low

PATH: Allocator.sol, BridgeConnectorHomeSTG.sol

REMEDIATION: consider removing the receive() function

STATUS: fixed

DESCRIPTION:

The contract Allocator and BridgeConnectorHomeSTG, despite having

payable functions that accept ether (or other native tokens), also have a

payable fallback function.

Nevertheless, the contracts are not designed to accept native tokens other

than in payable functions.

In the case of an Allocator contract, there is no function implemented to

sweep the wrongfully sent native tokens. Thus the tokens might eventually

get “frozen” in the contract. The BridgeConnectorHomeSTG contract has the

sweeping function, but the logic is overall redundant.

27

receive() external payable {}

+44 808 2711555 info@hexens.io

ASTRO-5. REDUNDANT IMPORTS

SEVERITY: Low

PATH: Swap.sol, Crate.sol

REMEDIATION: remove the redundant imports in favour of a
smaller contract size and clean code considerations

STATUS: fixed

DESCRIPTION:

1. Swap.sol: import "@openzeppelin/contracts/security/Pausable.sol" L7

2. Crate.sol: import

"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.s

ol" L15

3. Allocator.sol: import "./interfaces/ICrate.sol" L15

Contract Swap.sol imported the Pausable.sol but has never used it.

Contract Crate.sol imported the IERC20Metadata.sol but has never used

it.

Contract Allocator.sol imported the ICrate.sol but has never used it.

28

import "@openzeppelin/contracts/security/Pausable.sol";

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

import "./interfaces/ICrate.sol";

+44 808 2711555 info@hexens.io

ASTRO-1. MISSING ARRAY
PARAMETERS LENGTH CHECK

SEVERITY: Low

PATH: Crate.sol, Allocator.sol

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

In the following locations, there are at least 2 arrays as function

parameters that require the same length but are missing these length

checks:

1. contracts/Crate.sol:dispatchAssets (L479-500)

2. contracts/Crate.sol:estimateDispatchCost (L1037-1049)

3. contracts/Allocator.sol:dispatchAssets(L182-203)

29

+44 808 2711555 info@hexens.io 30

contract Crate {

 [...]

 function dispatchAssets(

 uint256[] calldata _amounts,

 uint256[] calldata _chainIds,

 uint256[] calldata _msgValues

) external payable onlyOwner {

 for (uint256 i = 0; i < _amounts.length; i++) {

 ChainData memory data = chainData[_chainIds[i]];

 // checks

 if (data.maxDeposit == 0) revert ChainError(); // Chain not active

 if (data.maxDeposit <= data.debt + _amounts[i])

 revert AmountTooHigh(data.maxDeposit); // No more funds can be sent to this chain

 chainData[_chainIds[i]].debt += _amounts[i];

 totalRemoteAssets += _amounts[i];

 asset.safeTransfer(data.bridge, _amounts[i]);

 if (block.chainid != _chainIds[i]) {

 IBridgeConnectorHome(data.bridge).bridgeFunds{

 value: _msgValues[i]

 }(_amounts[i], _chainIds[i]);

 }

 }

 }

 [...]

+44 808 2711555 info@hexens.io 31

 function estimateDispatchCost(

 uint256[] calldata _chainIds,

 uint256[] calldata _amounts

) external view returns (uint256[] memory) {

 uint256 length = _chainIds.length;

 uint256[] memory nativeCost = new uint256[](length);

 for (uint256 i; i < length; i++) {

 if (_chainIds[i] == block.chainid) continue;

 nativeCost[i] = IBridgeConnectorHome(chainData[_chainIds[i]].bridge)

 .estimateBridgeCost(_chainIds[i], _amounts[i]);

 }

 return (nativeCost);

 }

 [...]

 }

 Contract Allocator {

 [...]

 function dispatchAssets(

 uint256[] calldata _amounts, // @audit array lenghts

 address[] calldata _strategies

) external onlyOwner {

 for (uint256 i; i < _amounts.length; i++) {

 isWhitelisted(_strategies[i]);

 uint256 debt = strategiesData[_strategies[i]].debt;

 if (strategiesData[_strategies[i]].maxDeposit <= debt + _amounts[i])

 revert MaxDepositReached(_strategies[i]);

 strategiesData[_strategies[i]].debt += _amounts[i];

 totalStrategysDebt += _amounts[i];

 IERC20(asset).safeTransfer(_strategies[i], _amounts[i]);

 emit StrategyUpdate(_strategies[i], debt += _amounts[i]);

 }

 emit ChainDebtUpdate(totalChainDebt());

 }

+44 808 2711555 info@hexens.io 32

 [...]

 }

We would recommend checking the length of the input parameters so that

the error is caught to improve user experience.

For example:

require(array1.length == array2.length, "Arrays length mismatch");

+44 808 2711555 info@hexens.io 33

ASTRO-23. CODE STYLE PROBLEMS

SEVERITY: Low

PATH: Crate.sol, Swap.sol

REMEDIATION: consider tightly packing variable declarations and
removing the lines with the return keywords

STATUS: fixed

DESCRIPTION:

In the Crate contract, the ordering of the variable declaration can be tightly

packed to optimize storage usage and save gas.

In the Crate and Swap contracts there is redundant return keywords usage

as the variables are declared with the same syntax in the function’s return

tuple.

 uint8 private tokenDecimals; // The decimals of the token

 uint256 public totalRemoteAssets; // Amount of assets on other chains (or farmed on local chain)

 uint256 public performanceFee; // 100% = 10000

 uint256 public managementFee; // 100% = 10000

 uint256 public withdrawFee; // 100% = 10000

 uint256 public anticipatedProfits; // The yield trickling down

 uint256 public lastUpdate; // Last time the unrealized gain was updated

 Checkpoint public checkpoint; // Used to compute fees

 ElasticLiquidityPool public liquidityPool; // The pool used to process withdraws

 bool public liquidityPoolEnabled; // If the pool is enabled

 IERC20 public asset; // The asset we are using

+44 808 2711555 info@hexens.io 34

function mint(

 uint256 _shares,

 address _receiver

) external nonReentrant returns (uint256 assets) {

 assets = convertToAssets(_shares);

 // Requires

 if (assets == 0 || _shares == 0) revert AmountZero();

 if (assets > maxDeposit(_receiver))

 revert AmountTooHigh(maxDeposit(_receiver));

 if (_receiver == address(this)) revert CrateCantBeReceiver();

 // Moving value

 asset.safeTransferFrom(msg.sender, address(this), assets);

 _mint(_receiver, _shares);

 emit Deposit(msg.sender, _receiver, assets, _shares);

 return (assets);

 }

+44 808 2711555 info@hexens.io 35

function _withdraw(

 uint256 _amount,

 uint256 _shares,

 uint256 _minAmountOut,

 uint256 _deadline,

 address _receiver,

 address _owner

) internal nonReentrant returns (uint256 recovered) {

 if (_amount == 0 || _shares == 0) revert AmountZero();

 // We spend the allowance if the msg.sender isn't the receiver

 if (msg.sender != _owner) {

 _spendAllowance(_owner, msg.sender, _shares);

 }

 // Check for rounding error since we round down in previewRedeem.

 if (convertToAssets(_shares) == 0)

 revert IncorrectAssetAmount(convertToAssets(_shares));

 // We burn the tokens

 _burn(_owner, _shares);

 // Allows to take a withdraw fee

 _amount = (_amount * (MAX_BPS - withdrawFee)) / MAX_BPS;

 if (liquidityPoolEnabled) {

 // We don't take into account the eventual slippage, since it will

 // be paid to the depositoors

 liquidityPool.debt -= Math.min(_amount, liquidityPool.debt);

 try

 liquidityPool.swap.swapVirtualToAsset(

 _amount,

 _minAmountOut,

 _deadline,

 _receiver

)

+44 808 2711555 info@hexens.io 36

 returns (uint256 dy) {

 recovered = dy;

 } catch {

 // if the swap fails, we send the funds available

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

 } else {

 // If the liquidity pool is not enabled, we send the funds available

 // This allows for the bootstrapping of the pool at start

 asset.safeTransfer(_receiver, _amount);

 recovered = _amount;

 }

 if (_minAmountOut > 0 && recovered < _minAmountOut)

 revert IncorrectAssetAmount(recovered);

 emit Withdraw(msg.sender, _receiver, _owner, _amount, _shares);

 return (recovered);

 }

+44 808 2711555 info@hexens.io 37

 function swapVirtualToAsset(

 uint256 _dx,

 uint256 _minDy,

 uint256 _deadline,

 address _receiver

)

 external

 deadlineCheck(_deadline)

 onlyCrate

 returns (uint256 dy)

 {

 // If we are swapping 0, we return 0

 if (_dx == 0) {

 return 0;

 }

 dy = swapStorage._swap(

 VIRTUAL_ASSET_INDEX,

 REAL_ASSET_INDEX,

 _dx,

 _minDy

);

 LENDING_POOL.withdraw(

 address(UNDERLYING_TOKENS[REAL_ASSET_INDEX]),

 dy,

 _receiver

);

 // And we withdraw and send them to the recipient

 return dy;

 }

+44 808 2711555 info@hexens.io 38

ASTRO-4. REDUNDANT USAGE OF
SAFEMATH

SEVERITY: Low

PATH: Swap.sol

REMEDIATION: remove the import of OpenZeppelin’s SafeMath
library and replace all the arithmetic operations with their Solidity
equivalent

STATUS: fixed

DESCRIPTION:

The contract uses Solidity 0.8.17, which already checks arithmetic

operations for over- and underflow. This is suboptimal and wastes gas on

each function call containing these operations.

import "@openzeppelin/contracts/utils/math/SafeMath.sol";

[...]

contract Swap is Ownable {

 using SafeMath for uint256;

 [...]

}

+44 808 2711555 info@hexens.io 39

ASTRO-6. LACK OF PARAMETER
DESCRIPTION

SEVERITY: Informational

PATH: SwapUtils.sol

REMEDIATION: add a description for _mintToMint

STATUS: fixed

DESCRIPTION:

This function storage has descriptions of two of its three parameters, the

purpose of the third parameter _mintToMint is missing in the natspec.

/**

 * @notice Add liquidity to the pool

 * @param self Swap struct to read from and write to

 * @param amounts the amounts of each token to add, in their native precision

 * should mint, otherwise revert. Handy for front-running mitigation

 * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.

 * @return amount of LP token user received

 */

 function _addLiquidity(

 Swap storage self,

 uint256[] memory amounts,

 uint256 _mintToMint

) internal returns (uint256) {

+44 808 2711555 info@hexens.io 40

ASTRO-9. REDUNDANT PAYABLE
DECLARATION

SEVERITY: Informational

PATH: Crate.sol

REMEDIATION: remove payable modifier

STATUS: fixed

DESCRIPTION:

This function updateChainDebt is declared as payable, although it does

not use msg.value and does not call any other payable function.

function updateChainDebt(

 uint256 _chainId,

 uint256 _newDebt

) external payable onlyBridgeConnector {

 uint256 oldDebt = chainData[_chainId].debt;

 chainData[_chainId].debt = _newDebt;

 uint256 debtDiff = _newDebt - Math.min(_newDebt, oldDebt);

 if (debtDiff > 0) {

 // We update the anticipated profits

 anticipatedProfits = debtDiff + unrealizedGains();

 lastUpdate = block.timestamp;

 }

 totalRemoteAssets = totalRemoteAssets + _newDebt - oldDebt;

 emit ChainDebtUpdated(_newDebt, oldDebt, _chainId);

 emit SharePriceUpdated(sharePrice(), block.timestamp);

 }

+44 808 2711555 info@hexens.io 41

ASTRO-21. GAS OPTIMISATION

SEVERITY: Informational

PATH: BridgeConnectorHomeSTG.sol,
BridgeConnectorRemoteSTG.sol

REMEDIATION: consider adding “immutable” keyword to the
srcPoolId variable declaration

STATUS: partially fixed

DESCRIPTION:

In the contract, BridgeConnectorHomeSTG, the storage variable srcPoolId

is being set only in the constructor without the possibility of updating it in

future.

Thus using the immutable modifier will help optimize the gas usage of the

contract, and it will hardcode the srcPoolId in the constructor.

In the contract BridgeConnectorHomeSTG the variables dstPoolId,

srcPoolId, brigeGasAmount, homeBridge and layerZeroEndpoint can

also be flagged “immutable” and favour gas optimization.

+44 808 2711555 info@hexens.io 42

 uint256 public dstPoolId;

 uint256 public srcPoolId;

 uint256 public brigeGasAmount;

 uint256 public updateGasAmount;

 address public allocator;

 address public homeBridge;

 IStargateRouter public immutable stgRouter;

 ILayerZeroEndpoint public layerZeroEndpoint;

 constructor(

 address _crate,

 address _asset,

 address _stgEndpoint,

 address _lzEndpoint,

 uint256 _srcPoolId,

 uint16 homeLzChainId

) NonblockingLzApp(_lzEndpoint) {

 crate = _crate;

 asset = _asset;

 stgEndpoint = _stgEndpoint;

 srcPoolId = _srcPoolId;

 convertLzChainId[homeLzChainId] = block.chainid;

 _giveAllowances(_stgEndpoint, _asset);

 }

+44 808 2711555 info@hexens.io 43

ASTRO-17. CLEAN CODE

SEVERITY: Informational

PATH: Allocator.sol

REMEDIATION: consider using storage reference variable

STATUS: fixed

DESCRIPTION:

In the dispatchAssets function, the strategiesData[_strategies[i]] storage

mapping variable is used multiple times. For the clean code purposes it is

recommended to use storage reference variable in such cases, e.g:

Strategy storage strategyData = strategiesData[_strategies[i]];

+44 808 2711555 info@hexens.io 44

 function dispatchAssets(

 uint256[] calldata _amounts,

 address[] calldata _strategies

) external onlyOwner {

 for (uint256 i; i < _amounts.length; i++) {

 isWhitelisted(_strategies[i]);

 uint256 debt = strategiesData[_strategies[i]].debt;

 if (strategiesData[_strategies[i]].maxDeposit <= debt + _amounts[i])

 revert MaxDepositReached(_strategies[i]);

 strategiesData[_strategies[i]].debt += _amounts[i];

 totalStrategysDebt += _amounts[i];

 IERC20(asset).safeTransfer(_strategies[i], _amounts[i]);

 emit StrategyUpdate(_strategies[i], debt += _amounts[i]);

 }

 emit ChainDebtUpdate(totalChainDebt());

 }

+44 808 2711555 info@hexens.io 45

ASTRO-18. REDUNDANT INHERITANCE

SEVERITY: Informational

PATH: Crate.sol

REMEDIATION: consider removing the ERC20 inheritance leaving
only ERC20Snapshot, as well as removing Ownable inheritance

STATUS: fixed

DESCRIPTION:

The contract Crate inherits both from ERC20 and ERC20Snapshot, although

the contract ERC20Snapshot is already derived from ERC20; thus, the ERC20

inheritance is redundant.

contract Crate is Pausable, ReentrancyGuard, Ownable, ERC20Snapshot

contract BridgeConnectorHomeSTG is

 Ownable

 NonblockingLzApp,

 IStargateReceiver,

 IBridgeConnectorHome

+44 808 2711555 info@hexens.io 46

ASTRO-16. INCORRECT EVENT
EMISSION PARAMETER

SEVERITY: Informational

PATH: Allocator.sol

REMEDIATION: change the event emission parameter to log
crateChainId

STATUS: fixed

DESCRIPTION:

In the Allocator contract’s bridgeBackFunds function the

BridgeSuccessevent should rather emit crateChainId in case the funds

are bridged back, furthermore as the block.chainid is deterministic for every

deployed contract there is no actual need to emit it in the event.

 function bridgeBackFunds(uint256 _amount) external payable onlyOwner {

 address bc = bridgeConnector;

 //We send assets to the bridge/crate

 IERC20(asset).safeTransfer(bc, _amount);

 if (block.chainid != crateChainId) {

 IBridgeConnectorRemote(bc).bridgeFunds{ value: msg.value }(_amount);

 } else {

 // We update the crate directly if we're on the same chain

 _updateCrate();

 }

 emit BridgeSuccess(_amount, block.chainid);

 }

+44 808 2711555 info@hexens.io 47

ASTRO-12. GAS OPTIMISATION

SEVERITY: Informational

PATH: Allocator.sol

REMEDIATION: consider using calldata for arrays and strings; this
will optimize the gas usage

STATUS: fixed

DESCRIPTION:

In the Allocator contract, the function addNewStrategy() takes

_strategyName as a parameter. The string is declared as memory, which

uses more gas for additional memory operations.

contract Allocator is Initializable, OwnableUpgradeable {

 [...]

 function addNewStrategy(

 address _entryPoint,

 uint256 _maxDeposit,

 string memory _strategyName

) external onlyOwner {

 [...]

 }

 [...]

 }

+44 808 2711555 info@hexens.io 48

ASTRO-11. MISLEADING ERROR
DECLARATION

SEVERITY: Informational

PATH: bridgeConnectorRemoteSTG.sol

REMEDIATION: reconsider the error declaration

STATUS: fixed

DESCRIPTION:

The contract is declaring an error ZeroAddress() and using it in the

function setAllocator()(L134-138), but that function doesn’t do a zero

address check. Instead, it checks whether the allocator is set; thereby, it

needs a clearer error declaration, e.g., AllocatorSet.

contract BridgeConnectorRemoteSTG {

[...]

 error ZeroAddress();

[...]

 function setAllocator(address _allocator) external onlyOwner {

 // We can't change it after it's set

 if (allocator != address(0)) revert ZeroAddress();

 allocator = _allocator;

 }

}

+44 808 2711555 info@hexens.io 49

ASTRO-2. MESSAGE VALUE CHECK IS
MISSING

SEVERITY: Informational

PATH: Сrate.sol

REMEDIATION: add a check that all of the_msgValues total to
msg.value

STATUS: fixed

DESCRIPTION:

The function dispatchAssets is using a payable modifier meaning that the

owner can send value to the contract. Additionally, this function sends

value to the bridge. But the contract doesn’t check if the owner sent enough

value by calling this function, so the contract might be able to send value

from it’s own balance, which can be done accidentally. Furthermore the

owner might send an exceeding amount of msg.value to the contract.

+44 808 2711555 info@hexens.io 50

function dispatchAssets(

 uint256[] calldata _amounts,

 uint256[] calldata _chainIds,

 uint256[] calldata _msgValues

) external payable onlyOwner {

 for (uint256 i = 0; i < _amounts.length; i++) {

 ChainData memory data = chainData[_chainIds[i]];

 // checks

 if (data.maxDeposit == 0) revert ChainError(); // Chain not active

 if (data.maxDeposit <= data.debt + _amounts[i])

 revert AmountTooHigh(data.maxDeposit); // No more funds can be sent to this chain

 chainData[_chainIds[i]].debt += _amounts[i];

 totalRemoteAssets += _amounts[i];

 asset.safeTransfer(data.bridge, _amounts[i]);

 if (block.chainid != _chainIds[i]) {

 IBridgeConnectorHome(data.bridge).bridgeFunds{

 value: _msgValues[i]

 }(_amounts[i], _chainIds[i]);

 }

 }

 }

51

